2/2/22 - Adapting Trigonometric Substitution - Yigal Kamel
The goal for this methool is to make a good substitution to compute integrals which contain one of the following expressions:

$$
\sqrt{(A)} \sqrt{k^{2}-x^{2}} \quad \sqrt{x^{2}-k^{2}} \quad \sqrt{k^{2}+x^{2}} \quad(k=\text { constant })
$$

Strategy: Use the pythagorean theoren as our guide.

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& a^{2}=c^{2}-b^{2}
\end{aligned} \backsim \begin{aligned}
& c=\sqrt{a^{2}+b^{2}} \\
& a=\sqrt{c^{2}-b^{2}}
\end{aligned}
$$

$$
\text { or: } a^{2}=c^{2}-b^{2}
$$

These equations replace expressions like $(A),(B) \&$ (C) with something simpler.
Now, we just have to label a right triangle in a good way.
(A)

(B)

$$
\begin{aligned}
& x \\
& \sqrt{x^{2}-k^{2}}=x \sin \theta \\
&=k \sec \theta \sin \theta=k \tan \theta \\
& k=x \cos \theta \Rightarrow x \\
& \Rightarrow=\frac{k}{\cos \theta}=k \sec \theta \\
& \Rightarrow d x=k \sec \theta \tan \theta d \theta
\end{aligned}
$$

$$
\begin{gathered}
x=k \cos \theta \\
d x=-k \sin \theta d \theta \\
\sqrt{k^{2}-x^{2}}=k \sin \theta
\end{gathered}
$$

$$
\begin{aligned}
& x=K \sec \theta \\
& d x=K \sec \theta \tan \theta d \theta \\
& \sqrt{x^{2}-k^{2}}=k \tan \theta
\end{aligned}
$$

NOTE: In any of the calculations with triangles to the left, we could switch the roles of the legs of the triangle \& get a different substitution that
can work (this is the same as calling the other non-right angle " θ ").
(c)

