Adapting Trigonometric Substitution - Yigal Jamel
The goal for this method is to make a good substitution to compute integrals which contain one of the following expressions:

$$
\sqrt{(A)} \sqrt{k^{2}-x^{2}} \quad \sqrt{x^{2}-k^{2}} \quad \sqrt{k^{2}+x^{2}} \quad(k=\text { constant })
$$

Strategy: Use the pythagorean theorem as our guide.

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& a^{2}=c^{2}-b^{2}
\end{aligned} \backsim \begin{aligned}
& c=\sqrt{a^{2}+b^{2}} \\
& a=\sqrt{c^{2}-b^{2}}
\end{aligned}
$$

$$
\text { or: } a^{2}=c^{2}-b^{2}
$$

These equations replace expressions like $(\mathbb{A},(B), \&(C)$ with something simpler.
Now, we just have to label a right triangle in a good way.

$$
\text { (B) } \begin{aligned}
\sqrt{x^{2}-k^{2}} & =x \sin \theta \\
& =k \sec \theta \sin \theta=k \tan \theta \\
k=x \cos \theta & \Rightarrow x \\
\Rightarrow & =\frac{k}{\cos \theta}=k \sec \theta \\
\Rightarrow & d x=k \sec \theta \tan \theta d \theta
\end{aligned}
$$

(A)

$$
x=k \cos \theta \Rightarrow d x=-k \sin \theta d \theta
$$

NOTE: In any of the calculations with triangles to the left, we could switch the roles of the legs of the triangle \& get a different substitution that can work (this is the same as calling the other non-right angle " θ ").
(c)

