THE INTERMEDIATE VALUE THEOREM -YIGH KAMEL
Suppose
$$f(x)$$
 is continuous on $[a, b]$.
The Intermediate value
theorem says that
for any y-value d
between $f(a) & f(b)$,
there exists a corresponding
x-value c between a & b such that $f(c)=d$.
In other words...
As a continuous function f travels from
 $f(a)$ to $f(b)$, it cannot "jump" over
any intermediate value d.
Example
Q: Does the equation $x^4 - 3x^3 + 6x^2 + 2x = 5$
have any solutions?
A: Consider $f(x) = x^4 - 3x^3 + 6x^2 + 2x = 5$.
Then $f(c) = -5$ and $f(1) = 1$. Since
f is continuous and $-5 < 0 < 1$, the
INT says there exists a number C
(between 0 and 1) such that $f(c) = 0$.
Then c is a solution to the original equation.