

- Yigal jamel
we find a green 5 kg weight as a seesaw. we want to place on orange 3 kg weight on the opposite side of the fulcrum so that the seaman balances.
$\overline{\text { Torque }}=\underbrace{(\text { FORCE })}_{\text {(mass) }) \cdot g} \cdot$ (Distance From Fulcrum)
\Rightarrow want: $5 \cdot \mathrm{~g} \cdot 2=3 \cdot \mathrm{~g} \cdot d \Rightarrow d=\frac{10}{3}$
where d is the distance from the orange mass to the fulcrum.
If we relable 5 kg as m_{1}, 3 kg as m_{2}, \& ven the seesaw as on x-axis with the fukrm at zero, the the "balancer" eqn. is:

$$
m_{1} x_{1}+m_{2} x_{2}=0
$$

where x_{i} is the location of m_{i} an the axis. For " n " masses, this extuds to:

$$
\sum_{i=1}^{n} m_{i} x_{i}=m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}=0
$$

Q: What if we doit know where the "center of mass" (=fulcrum) is?
A: Give the unknown center of mass a nave: \bar{x}. Then:

$$
\sum_{i=1}^{n} m_{i}\left(x_{i}-\bar{x}\right)=0 \Longleftrightarrow \sum_{i=1}^{n} m_{i} x_{i}=\sum_{i=1}^{n} m_{i} \bar{x}=\left(\sum_{i=1}^{n} m_{i}\right) \bar{x}
$$

Notice: $m=\sum_{i=1}^{n} m_{i}$ is the total mass. So the cuter of mass is] He locator where we con treat all the mass as beng located there.]
Dividing gives: $\bar{x}=\frac{\sum_{i=1}^{n} m_{i} x_{i}}{\sum_{i=1}^{n} m_{i}}=\frac{\text { total "moment" }}{\text { total mass }}$
We do the analogous thing for a contunousty distributed mass: $\bar{x}=\frac{\int_{x} x d m}{\int_{x} d n}$ where I is the interval over which the mass is defied.

