(DISCRETE) (ENTER OF MASS (IN ONE DIVENSION) - YIGAL KAMEL
(DISCRETE) (ENTER OF MASS (IN ONE DIVENSION) - YIGAL KAMEL

we find a great 5kg weight as a seesaw.
we wont to phase an orange 3kg weight
on the oppose sile of the futurion so
that the seewaw balances.
TORQUE = (FORCE) (DISTANCE FROM FULCEDM)
(mass), g

where d is the distance from the orange mass to the future.
If we relable 5¹⁶g as
$$m_1$$
, 3¹⁶g as m_2 , & view the
seesaw as on x-ans with the fiture at 2005 the the "balanceg" eqn. 15:

 $m_1 \chi_1 + m_2 \chi_2 = O$
where χ_i is the lacture of m_i as the axis. For "n" masses, this extinds to:

 $\sum_{i=1}^{n} m_i \chi_i = m_i \chi_1 + m_2 \chi_2 + \dots + m_n \chi_n = O$

Q: What if we don't know where the "cate of mass" (= Future) is ?

A: Give the unknown centr of mass a none: χ . Then:
 $\sum_{i=1}^{n} m_i (\chi_i - \bar{\chi}) = O \iff \sum_{i=1}^{n} m_i \chi_i = \sum_{i=1}^{n} m_i \chi_i = (\sum_{i=1}^{n} m_i) \bar{\chi}$

Notice: $m = \sum_{i=1}^{n} m_i$ is the total mass. So the cate of mass is
the location where we an treat all the mass as being located three.

Divelve gives: $\chi = \frac{\sum_{i=1}^{n} m_i \chi_i}{\chi_i} = \frac{10 \text{ min}}{\sum_{i=1}^{n} m_i}$ are continueably distributed mass:
 $\overline{\chi} = \frac{\int_{i=1}^{n} m_i \chi_i}{\int_{i=1}^{n} m_i \chi_i} = \frac{10 \text{ min}}{m_i \chi_i}$ distributed mass is defined.

We do the coologies things for a continueably distributed mass is defined.

 $\overline{\chi} = \frac{\int_{i=1}^{n} m_i \chi_i}{\int_{i=1}^{n} m_i \chi_i}$ distributed mass is defined.