The derivative of $\arctan (x)$
GOAL: Compute $\frac{d}{d x} \arctan (x) \quad\left[=\arctan ^{\prime}(x)\right]$.
(1) "Trick": Set up a simple equation involving arctan x. $\arctan (x)=$ the inverse function of $\tan (x) \leadsto \tan (\arctan x)=x$.
(2) Differentiate both sides of the equation.

$$
\frac{d}{d x}[\tan (\arctan (x))]=\frac{d}{d x} x
$$

$\tan ^{2} x=\sec ^{2} x($

$$
\sec ^{2}(\arctan x) \arctan ^{\prime}(x)=1 \underset{\sim}{\sec x=\frac{1}{\operatorname{sinx}}} \arctan ^{\prime}(x)=\cos ^{2}(\arctan x)
$$

ζ need a better expression for " $\cos ^{2}(\arctan x)$ "...
(3) Draw a triangle to reinterpret trig expressions.

$=$ right triangle $\omega /$ hypotenuse $=1$ \& an angle θ.
Recall : "SOH-CAH-TOA" \Rightarrow base $=\cos \theta$ \& height $=\sin \theta$.
Since $\arctan \left(\tan \theta=\frac{\sin \theta}{\cos \theta}\right) \Rightarrow \theta=\arctan \left(\frac{\sin \theta}{\cos \theta}\right)$
$\Rightarrow \cos \theta=\cos \left(\arctan \left(\frac{\sin \theta}{\cos \theta)}\right)\right.$. Since we want $\cos ^{2}(\arctan x) \ldots$
Let $x=\frac{\sin \theta}{\cos \theta} \Rightarrow \cos ^{2} \theta=\cos ^{2}(\arctan x)$.
(4) Convert expressions back in terms of " x ".

$$
\begin{aligned}
& x=\frac{\sin \theta}{\cos \theta} \Rightarrow x^{2}=\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \Rightarrow \cos ^{2} \theta=\frac{\sin ^{2} \theta}{x^{2}} \stackrel{1}{=} \frac{1-\cos ^{2} \theta}{x^{2}} \\
& \Rightarrow \frac{1}{x^{2}}=\cos ^{2} \theta+\frac{\cos ^{2} \theta}{x^{2}}=\cos ^{2} \theta\left(1+\frac{1}{x^{2}}\right) \\
& \Rightarrow \cos ^{2} \theta=\frac{1 / x^{2}}{\left(1+1 / x^{2}\right)}=\frac{1}{x^{2}\left(1+\frac{1}{x^{2}}\right)}=\frac{1}{x^{2}+1} \Rightarrow \arctan (x)=\frac{1}{x^{2}+1}
\end{aligned}
$$

Note: The same ideas work to find $\arcsin ^{\prime}(x) \& \arccos ^{\prime}(x)$, and those turn out to be a bit easier.

