2/23/22 - Arc Length - Yigal Jamel
Want: Length of the curve detheal by the graph of $f(x)$

Over a small interval Δx, we can try to use Δx to approximate the length, Δs, of the corresponding segment of the graph.

ISSUE: The steeper the slope of $f(x)$ an the interval of Δx, the more wrong this approximation will be - this error does NoT vanish in the limit!
$L[$ when the word "slope" appears, you know there will be a derivative!]
FIX: Pythagorean theorem $\Rightarrow(\Delta s)^{2}=(\Delta x)^{2}+(\Delta y)^{2}$

$$
\Rightarrow \Delta s=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}=\sqrt{(\Delta x)^{2}\left[1+\frac{(\Delta y)^{2}}{(\Delta x)^{2}}\right]}=\Delta x \sqrt{1+\left(\frac{\Delta y}{\Delta x}\right)^{2}}
$$

Taking a limit as $\Delta x \rightarrow 0, \quad \frac{\Delta y}{\Delta x}=f^{\prime}(x) \quad$ (by deletion!)

$$
\Rightarrow d s=\sqrt{1+f^{\prime}(x)^{2}} d x
$$

Notice: When $f^{\prime}(x)=0 \leadsto \quad d s=\sqrt{1} d x=d x$. In other words, when the graph is horizontal (= no slope), Our original "bad" approximation is exactly right!

Looking ahead: In a seise, this init a "natural" way to look at arc length of a curve. Better: View the curve as being "traced out over time" $\rightarrow(x(t), y(t))$ where each coordinate is a function of t.
Q: Can you formulate the arc length of such a curve as a function of t ?

