

Notice: When
$$f'(x) = 0 \longrightarrow ds = \int I dx = dx$$
.
In other words, when the graph is horizontal (= no slope),
Our original "bad" approximation is exactly right!
Looking ahead: In a serse, this isn't a "natural" way to look at
arc leigth of a curve. Better: View the curve as being "traced
out over time" $\rightarrow (x(t), y(t))$ where each coordinate is a function of t
 \overline{Q} : Can you formulate the arc length of such a curve as a function of t?