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1 Motivation

Given a group G, the Atiyah-Segal completion theorem [3] provides a precise relationship

between K(BG) and R(G). Namely,

K∗(BG) ∼= R(G)ÎG .

Since BG is a “delooping” of G, we can ask if K∗(G) can be used to describe R(LG), where

LG is the loop group of smooth maps from the circle into G. Freed, Hopkins, and Teleman

[7] realized this goal as an isomorphism

Kg+ȟ+τ
G (G) ∼= Rτ (LG). (1)

The subscript refers to the action of G on itself by conjugation, and the superscript refers

to a twist of equivariant K-theory. Our goal in this talk is to understand what twists of

K-theory are and how the associated twisted (equivariant) K-theory groups are defined. In

the process, we will also refine the category (previously RTop) that will serve as the domain

for twisted K-theory.
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2 Twists of cohomology theories

2.1 What does it mean to twist an object?

The following table is a perspective on the word “twist” motivated by the idea that a space

is a twisted point.

object twisted object

∗ space X

vector space vector bundle V → X

group principal bundle P → X

Note that in the table above,

• twisted objects depend on the input of a specific space X to “twist over”,

• the fibers of a twisted object are isomorphic to a specific untwisted object.

In this spirit, we can call a real (complex) vector bundle V → X of rank n a twist of Rn

(Cn) overX. Similarly, a principalG-bundle P → X can be thought of as a twist ofG overX.

We want to define twists of a cohomology theory. As a test case, let’s define twists of a ring.

Looking more closely at the examples of vector bundles and groups, we can notice a couple

things:

• principal bundles forget the identity elements of its fibers;

• twisted objects over X can be classified by maps into an appropriate classifying space.

The idea of “forgetting the identity” for rings amounts to considering bundles whose fibers

are free R-modules of rank 1. We expand our table to include rings and the associated

homotopical description in terms of classifying maps.

object twisted object classified by

∗ space X X → BAut(∗) ≃ ∗
vector space vector bundle V → X X → BGLn(k)

group principal bundle P → X X → BG

ring bundle of free R-modules of rank 1 X → BGL1(R) ≃ BR×

In order to get a handle on what the appropriate notion for cohomology is, let’s consider a

familiar example.

Example 2.1.1. Ordinary cohomology with local coefficients.

Given an abelian group A, we can define H∗(X;A) = singular cohomology of X with co-

efficients in A. We can replace A with a local system of abelian groups, i.e. a presheaf
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A : Π≤1X → Ab, and similarly define H∗(X;A) = singular cohomology of X with coeffi-

cients in A.

Given a real vector bundle of rank n, π : V → X, define AV (p) = H̃n(π−1(p);Z) ∼= Z. Then
there is a “twisted” Thom isomorphism

H∗(X;AV ) ∼= H∗+n(XV ;Z).

An orientation of V amounts to a natural isomorphism of functors AV
∼= Z, which induces

the untwisted Thom isomorphism H∗(X;Z) ∼= H∗+n(XV ;Z).

Remark 2.1.2. The approach in Example 2.1.1 is fine, but in the spirit of the perspective

above on twisted objects, we want to realize these and more general twists of cohomology

as “bundles of spectra”. From this homotopical point of view, requiring a path to induce an

isomorphism is too strong, so we need to replace the fundamental groupoid Π≤1X with the

fundamental ∞-groupoid = singular complex of X: Π∞X = SingX.

Following the idea of twisted rings as bundles of free rank 1 modules, we make the following

definitions, using Example 2.1.1 as a prototype.

Definition 2.1.3 ([1]). Let A be a cohomology theory (by which we mean S-algebra, where

S is the sphere spectrum; see [1]).

• ModA := ∞-category of A-modules;

• LineA := subcategory of ModA consisting of the A-lines, i.e. A-modules that are weakly

equivalent to A.

• A twist of A over a space X is a functor SingX → LineA.

It turns out that the geometric realization of LineA is a familiar space:

|LineA| ≃ BGL1A,

where GL1A is the subspace of Ω∞A consisting of the connected components that are units

in the ring π0(Ω
∞A):

GL1A Ω∞A

π0(Ω
∞A)× π0(Ω

∞A).

⌟
(2)

Thus, twists of a cohomology theory A are classified by maps (of spaces) X → BGL1A. We

can now add cohomology to the table:
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object twisted object classified by

∗ space X X → BAut(∗) ≃ ∗
vector space vector bundle V → X X → BGLn(k)

group principal bundle P → X X → BG

ring bundle of free R-modules of rank 1 X → BGL1(R) ≃ BR×

cohomology bundle of A-modules weakly equivalent to A X → BGL1A

2.2 Twisted cohomology.

While we could have started with the space-level classification of twists of cohomology, the

infinity-categorical language leads to a convenient definition of the corresponding twisted

cohomology of a space.

Definition 2.2.1 ([1]). Given a twist f : SingX → LineA,

• the Thom spectrum of f is

Xf := colim(SingX
f−→ LineA ⊂ ModA) = “ colim

p∈X
f(p)” ∈ ModA;

• the f -twisted A-cohomology of X (in degree n) is

An+f (X) := [Xf ,ΣnA]ModA .

Example 2.2.2. Cohomology twisted by vector bundles.

Given a vector bundle V classified by a map X → BO, we obtain a twist as in Definition

2.1.3 (which we also denote by V ) as follows:

X BO

BGL1S

BGL1A

V

BJ

−∧A

where BJ is induced by the J-homomorphism, and − ∧ A is “change of scalars” given by

tensoring with A. Then the V -twisted A-cohomology of X is

A∗+V (X) = [XV ∧ A,Σ∗A]ModA

∼= [XV ,Σ∗A]ModS

= A∗(XV ),

so we recover the Thom isomorphism from Example 2.1.1. In fact, this suggests that we can

view the definition of twisted cohomology for general twists as a generalized twisted Thom

isomorphism.
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Remark 2.2.3. In Example 2.2.2 we abused notation and identified two different notions of

Thom spectrum. This is justified by Theorem 4.5 in [1], which is proved in [2]. See [1] and

[2] for a more extensive discussion of Thom isomorphisms and orientations.

Example 2.2.4. General twists of ordinary cohomology.

We know vector bundles twist ordinary cohomology. We can ask if there are any other twists.

Let HZ be the Eilenberg-Mac Lane spectrum with integer coefficients. Then (2) becomes

Z/2 Z

Z/2 Z,

⌟

So BGL1(HZ) ≃ B(Z/2) ≃ RP∞, which classifies real line bundles. Thus,

{twists : X → BGL1(HZ)} ∼= {real line bundles on X}.

This shows that not all vector bundles yield distinct twists of cohomology; only the orien-

tation line bundle of a vector bundle contributes to the twist. Another way to say the same

thing is that the suspension isomorphism (i.e. cohomological degree) is not considered a twist

from this point of view. We can, in fact, incorporate degree into this general framework for

twists by replacing LineA with Pic(A) = Pic(ModA). Roughly speaking, this replaces “free

module of rank 1” with “invertible module”. We’ll return to this in section 3.4.

3 Twists of K-theory

3.1 General twists.

As in Definition 2.1.3, a twist of K-theory, is a map X → BGL1K, where K is the (complex)

K-theory spectrum [8].

Proposition 3.1.1 (stated in [6]). GL1K ≃ Z/2× CP∞ ×BSU .

After delooping:

• the Z/2 factor classifies twists τ ∈ [X,B Z/2] ∼= H1(X;Z/2), which are the same as

the twists arising from line bundles in Example 2.2.4 (since B Z/2 ≃ K(Z/2, 1)).

• For the CP∞ factor, recall that CP∞ ≃ BU(1) (since it is a classifying space for

complex line bundles), and U(1) ≃ B Z. Thus, the corresponding twists of K-theory

are

τ ∈ [X,B CP∞] ∼= [X,B3 Z] ∼= [X,K(Z, 3)] ∼= H3(X;Z).

• We will ignore the twists arising from BSU in this talk.
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3.2 The Atiyah-Segal model for twists in H3(X;Z).

We are interested in geometric representatives for twists of K-theory. There are a number of

ways to achieve this; the one that seems closest to their characterization above is presented

in [4].

Consider the unitary group U(H) of a separable Hilbert space H. Atiyah and Segal show

that U(H) is contractible, and it has an evident free action by U(1). Thus, U(H) with this

U(1)-action is a model for the universal bundle EU(1). In particular,

PU := U(H)/U(1) ≃ BU(1).

By the discussion above, we see that

{twists τ ∈ H3(X;Z)} ∼= [X,BPU ]

∼= {PU -bundles over X}
∼= {P (H)-bundles over X}.

So we can view a projective Hilbert bundle as a way to twist K-theory over a space.

Remark 3.2.1. As stated, projective Hilbert bundles correspond to twists in H3(X;Z).

• We can also recover the twists that correspond to elements of H1(X;Z/2) by adding

a Z/2-grading to the Hilbert bundles.

• It is often convenient to use finite dimensional geometric models for homotopical ob-

jects. To this end, we can ask which twists arise from considering projective Hilbert

bundles with finite dimensional H. It turns out that such bundles correspond exactly

to the torsion elements in H3(X;Z); see [4].

Thus, in Atiyah and Segal’s model for twists of K-theory, infinite dimensional geometry

is unavoidable. We can circumvent the infinite dimensionality by “raising the category

level” of our “bundles”. This is the model presented by Freed in [5]. In the process, Freed

also realizes cohomological degree as a twist, i.e. he constructs a finite dimensional model

for Pic(ModA)[0, 3] (see Example 2.2.4). In order to (cleanly) describe what such “higher

categorical bundles” are, we should reexamine what we mean by spaces.
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3.3 Local quotient groupoids (topological stacks).

“spaces” X

twisted equivariant

K-theory

use open covers to define

bundles/local systems

G-spaces {Ui}i ≃ X

local quotient groupoids

topological stacks

want want

The following material is a summary of the appendix of [7].

Definition 3.3.1. A groupoid (X0, X1) = (X1 X0) is a groupoid object in the cat-

egory Top of spaces.

Remark 3.3.2. Groupoids, (continuous) functors, and (continuous) natural transformations

form a 2-category TGrpd.

Recall that the nerve of a groupoid is a simplicial space X•, where a point in Xn is an n-tuple

of composable morphisms (points in X1). The geometric realization |X| of a groupoid X is

the geometric realization of its nerve, i.e.

|X| =
(∐

n

Xn ×∆n
)
/ ∼ .

Example 3.3.3. Spaces as groupoids.

Let X be a space. Then (X,X) = (X X) is a groupoid, where all maps are the

identity. Note that the associated map Top → TGrpd (with any appropriate meaning of Top)

realizes Top as a full subcategory of TGrpd. In light of this, and the fact that |(X,X)| ≃ X,

the groupoid (X,X) is also denoted X.

Example 3.3.4. Groups as groupoids.

Let G be a (topological) group. Then (∗, G) = (G ∗) is a groupoid where compo-

sition is defined by the group operation. Similar to Example 3.3.3, TGrp → TGrpd is a

full subcategory. In light of the fact that |(∗, G)| ≃ BG, the groupoid (∗, G) is sometimes

denoted BG. This notation is not ideal, since the space BG contains less information than

the groupoid BG (this difference is detected by the Atiyah-Segal completion theorem). In

light of the next example, I prefer the notation ∗�G for this groupoid. (Alternatively, one

can use BG to denote the groupoid, and |BG| for the space.)
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Example 3.3.5. G-spaces as groupoids.

Let X be a G-space. Then X�G := (X,G×X) = (G×X X)
t

d
is a groupoid, where

d(g, x) = x, t(g, x) = gx, identities are given by the identity of G, and composition is defined

by composition in G. In other words, a morphism from x ∈ X to y ∈ X is an element of

G that sends x to y. The notation is motivated by the fact that |X�G| is the homotopy

quotient of X by G. This identification realizes the category RTop of G-spaces, that we

previously used as the domain for equivariant K-theory, as a subcategory of TGrpd.

Example 3.3.6. Open covers as groupoids.

Let {Ui}i be an open cover of a space X. Then Č({Ui}i) := (
∐

i Ui,
∐

i,j Ui∩Uj) is a groupoid

with domain and target maps induced by the inclusions Ui ∩ Uj ↪−→ Ui and Ui ∩ Uj ↪−→ Uj,

and identity map given by the identity Ui
id−→ Ui∩Ui = Ui. In other words, a morphism from

xi ∈ Ui to xj ∈ Uj is an element xij ∈ Ui ∩ Uj such that xij = xi = xj ∈ X.

The examples above show that the category TGrpd contains the objects we want it to. We

still need to show that an open cover of a space X is equivalent to X under an appropriate

notion of equivalence.

Definition 3.3.7. A (continuous) functor of groupoids F : X → Y is a local equivalence if

• F is fully faithful,

• F is essentially surjective,

• F “admits local inverses”.

The third condition is slightly more technical [7], but this is the main idea.

Remark 3.3.8. The equivalence relation generated by local equivalences is called weak

equivalence. Given a groupoid X there is an associated topological stack X̃ defined as (the

stackification of) X̃(U) = HomTGrpd(U,X). Then two groupoids are weakly equivalent if and

only if their associated topological stacks are equivalent. In light of this, going forward we

will implicitly identify groupoids up to local equivalence with topological stacks.

Example 3.3.9. Let {Ui}i be an open cover of a space X. Then the projection∐
i,j

Ui ∩ Uj X

∐
i

Ui X

is a local equivalence Č({Ui}i) → X.
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Example 3.3.10. Let P → X be a principal G-bundle. Then there is a local equivalence

P�G→ X.

Before we move on, we need to restrict the category TGrpd to those groupoids that locally

look like the groupoids in Example 3.3.5. In other words, we consider the subcategory that

is just big enough to include the examples we are interested in. The reason this restriction

is necessary is explained in [7].

Definition 3.3.11. A groupoidX is a local quotient groupoid if it is locally weakly equivalent

to S�G for a compact Lie group G acting on a Hausdorff space S. Here, locally means over

an open cover of the object space X0. Let LQGrpd ⊂ TGrpd be the full subcategory of local

quotient groupoids.

3.4 The 2-category of algebras and bimodules.

Now, we want to represent twists ofK-theory as finite dimensional bundles over local quotient

groupoids. We need to use 2-categorical structure in order to represent all twists by finite

dimensional bundles. To this end, we introduce a 2-category that will serve as a classifying

space for bundles over a local quotient groupoid. See [5] for more details on the material in

this section.

Definition 3.4.1. Let Alg be the 2-category where

• objects are Z/2-graded C-algebras,

• a 1-morphism A0 → A1 is a Z/2-graded (A1, A0)-bimodule,

• 2-morphisms are homomorphisms of bimodules.

Then Alg is a symmetric monoidal 2-category under the operation ⊗C. Let Alg× ⊂ Alg be

the subcategory of invertible objects, invertible 1-morphisms, and invertible 2-morphisms.

Further, we can enrich the hom-sets HomAlg×(A0,A1)(M0,M1) of 2-morphisms with a topology

to obtain a topologically enriched (Picard) 2-groupoid cAlg×. Calculating the homotopy

groups of the geometric realization, we find

πn(cAlg
×) =


Z, n = 3

0, else

Z/2, n = 1

Z/2, n = 0.

These are the homotopy groups we need to classify the types of twists discussed after Propo-

sition 3.1.1, as well as twists by cohomological degree. In other words, if X is a local quotient

groupoid, then
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{
continuous 2-functors

X → cAlg×

}
H0(X;Z/2)×H1(X;Z/2)×H3(X;Z).∼

Remark 3.4.2. We have not yet said what it means to evaluate ordinary cohomology on

a local quotient groupoid. Define Hk(X;R) := Hk(|X|;R). In light of Example 3.3.5, this

includes the ordinary Borel equivariant cohomology of a G-space as a special case. Thus, for

equivariant K-theory, twists over a G-space X are classified by H0
G(X;Z/2)×H1

G(X;Z/2)×
H3

G(X;Z).

Following the discussion above, we’ll consider twists of K-theory to be maps τ : X → cAlg×.

Such a map can be though of as a bundle of invertible algebras τ = (A,B, λ), in the following

way.

• OnX0, τ determines a fiber bundle of invertible (= central simple) Z/2-graded algebras

A→ X0.

• On X1, τ determines a Z/2-graded vector bundle B → X1 which is an invertible

(p∗0A, p
∗
1A)-bimodule.

• On X2, τ determines an isomorphism λ of (bundles of) bimodules, which at a point

(x0
f1−→ x1

f2−→ x2) ∈ X2, is an isomorphism λf2,f1 : Bf2 ⊗Ax1
Bf1

∼−→ Bf2f1 .

• On X3, there is an associativity condition on the λ’s relating the bimodules B over the

various composites of a point (x0
f1−→ x1

f2−→ x2
f3−→ x3) ∈ X3.

This realizes our goal of representing twists of K-theory by finite dimensional geometric

objects.

Example 3.4.3. Let X = Č({Ui}i). We obtain a general class of twists by letting A be the

trivial bundle C. In this case,

• B assigns a line bundle Lij → Ui ∩ Uj to each i, j.

• λ specifies an isomorphism Ljk ⊗ Lij
∼−→ Lik over Ui ∩ Uj ∩ Uk.

• There’s an associativity condition on the λ’s over Ui ∩ Uj ∩ Uk ∩ Ul.

There are the twists that are described in [7].

Example 3.4.4. Let X = ∗�G. Then{
invertible algebra

bundles (C, B, λ)

} {
Z/2-graded central

extensions of G by C×

}
.∼
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In light of this example, Freed-Hopkins-Teleman [7] refer to more general twists over groupoids

as “graded central extensions”.

Example 3.4.5. Let G be a compact connected Lie group. Then LG acts on the path space

PG, and G acts on itself, both by conjugation. There is a local equivalence of groupoids

PG�LG ∼−→ G�G.

Using this local equivalence, we can use graded central extensions L̃G→ LG to define twists

of G�G. This is the groupoid of interest in (1). Here we find a relationship between K-theory

twists over G�G and the group LG as in the main theorem (1) of [7].

4 Twisted K-theory

Now that we’ve surveyed various ways of representing twists τ of K-theory, we move on to

describe the τ -twisted K-theory of a local quotient groupoid.

4.1 Twisted vector bundles.

We start by introducing one way to define classes in twisted K-theory using the geomet-

ric model for twists discussed in section 3.4. The idea is based on the representation of

(untwisted) K-theory classes by (Z/2-graded) vector bundles.

Definition 4.1.1. Let τ = (A,B, λ) be a twist over a local quotient groupoid X. A τ -twisted

vector bundle E = (E0, ψ) over X is

• an A-module (bundle) E0 → X0,

• an isomorphism ψ : B ⊗
p∗1A

p∗1E0
∼−→ p∗0E0 of p∗oA-modules over X1,

• satisfying a condition on X2.

Remark 4.1.2. While τ -twisted vector bundles do represent classes in τ -twisted K-theory,

we won’t go too far in pursuing this model here, since they are not enough to represent all

τ -twisted K-theory classes. Similar to the situation with Atiyah-Segal twists (Remark 3.2.1

and [4]), only torsion classes arise as (finite dimensional) twisted vector bundles. Harnessing

the extra 2-categorical structure allowed us to recover all twists, but we still don’t recover

all twisted K-theory classes.
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4.2 Twisted K-theory via Fredholm operators.

See [7] for more details on the material in this section. We want a complete model for twisted

K-theory that is more geometric in nature than Definition 2.2.1. To this end, recall that

ordinary K-theory is represented by a space of Fredholm operators on a Hilbert space H:

K(X) ∼= [X,Fred(H)]

∼= π0map(X,Fred(H))

∼= π0Γ(X × Fred(H) → X).

Using this point of view, we can replace the trivial bundle of Fredholm operators appearing

above with a twisted one. Define τ -twisted Hilbert bundle as in Definition 4.1.1, replacing

the words “vector space” with “Hilbert space”.

Proposition 4.2.1. For any twist τ over a local quotient groupoid X, there exists a locally

universal τ -twisted Hilbert bundleH, i.e. one that all other τ -twisted Hilbert bundles locally

embed into.

Given a locally universal τ -twisted Hilbert bundle H, there is a bundle Fred(0)(H) → X of

odd skew-adjoint Fredholm operators. Further we can define Fred(n)(H) ⊂ Fred(0)(Cln ⊗H)

as the odd Fredholm operators that are also Cln-linear, where Cln is the Clifford algebra

associated to Cn with v2 = −⟨v, v⟩ .

Definition 4.2.2. Let τ be a twist of K-theory over a local quotient groupoid X. Define

• Kτ (X)n := Γ(Fredn mod 2(H) → X), and Kτ (X) for the resulting Ω-spectrum;

• Kτ (X,A) := homotopy fiber of Kτ (X) → Kτ (A);

• Kn+τ (X,A) := π−nK
τ (X,A) ∼= π0K

τ (X,A)n.

The groups Kn+τ (X,A) satisfy the typical properties of a cohomology theory:

• functoriality,

• homotopy invariance,

• there are long exact sequences,

• excision,

•
∐

7→
∏
,

• there is a product structure.

Example 4.2.3. Let X = S�G be a G-space, and let τ be a twist over X corresponding to

a central extension U(1) → Gτ → G with the trivial even grading. Then

Kn+τ (X) ⊂ Kn
Gτ (S)

is a direct summand (corresponding to U(1) acting by its standard representation).
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5 Computation of Kk+τ
SU(2)(SU(2))

This computation is from [7].

Let X = SU(2)�SU(2), where SU(2) acts on itself by conjugation. Then

• H1(X;Z/2) = H1
SU(2)(SU(2);Z/2) = 0, and

• H3(X;Z) = H3
SU(2)(SU(2);Z) ∼= Z,

so twists over X (other than the degree = k) correspond to τ = n ∈ Z.

Let {U+, U−} be the open cover of SU(2) ≃ S3 obtained by deleting −1 and +1, respectively.

By the long exact sequence and excision properties, we have a Mayer-Vietoris sequence

associated to this open cover.

• U± ≃
SU(2)

∗ =⇒ K0
SU(2)(U±) ∼= R(SU(2)) ∼= Z[L,L−1]Z/2, where Z/2 swaps L and L−1.

• U+ ∩ U− ≃
SU(2)

SU(2)/U(1) =⇒ K0
SU(2)(U+ ∩ U−) ∼= K0

U(1)(∗) ∼= R(U(1)) ∼= Z[L,L−1].

The Mayer-Vietoris sequence then manifests as

0

K0+τ
SU(2)(SU(2)) Z[L,L−1]Z/2 ⊕ Z[L,L−1]Z/2 Z[L,L−1]

K1+τ
SU(2)(SU(2)) 0,

from which it can be concluded that

Kk+τ
SU(2)(SU(2))

∼=

{
0, k = 0

Z[L,L−1]Z/2/(Ln−1 + Ln−3 + · · ·+ L−(n−1)), k = 1

This ring is isomorphic to the Grothendieck ring of positive energy representations of LSU(2)

at level n− 2. This isomorphism is an instance of the Freed-Hopkins-Teleman [7] theorem,

stated in equation (1) above.

References

[1] Ando, M., Blumberg, A. J., Gepner, D., Twists of K-theory and TMF.

[2] Ando, M., Blumberg, A. J., Gepner, D., Hopkins, M. J., Rezk, C., Units of ring spectra

and Thom spectra.

13



[3] Atiyah, M. F., Segal, G., Equivariant K-theory and completion.

[4] Atiyah, M. F., Segal, G., Twisted K-theory.

[5] Freed, D. S., Lectures on twisted K-theory and orientifolds.

[6] Freed, D. S., The Verlinde algebra is twisted equivariant K-Theory.

[7] Freed, D. S., Hopkins, M. J., Teleman, C., Loop groups and twisted K-theory I.

[8] Joachim, M., Higher coherences for equivariant K-theory.

14


