
Strong monoidal functors and modules

Yigal Kamel

I wrote this note because I wanted to know that a strong monoidal functor which is also an isomorphism

of categories preserves (sub)categories of modules up to isomorphism (Proposition 11). A similar fact

holds for strong monoidal equivalences (Proposition 13).

Definition 1. Let (C,⊗C, 1C) and (D,⊗D, 1D) be monoidal categories. A lax monoidal functor

(F, e, µx,y) : (C,⊗C, 1C) → (D,⊗D, 1D) is

• a functor F : C → D,

• a morphism e : 1D → F (1C), and

• a natural transformation µx,y : F (x)⊗D F (y) → F (x⊗C y),

such that

1. (associativity) for all x, y, z ∈ obj(C), the diagram

(F (x)⊗D F (y))⊗D F (z) F (x)⊗D (F (y)⊗D F (z))

F (x⊗C y)⊗D F (z) F (x)⊗D F (y ⊗C z)

F ((x⊗C y)⊗C z) F (x⊗C (y ⊗C z))

aD

µ⊗id id⊗µ

µ µ

F (aC)

commutes, and

2. (unitality) for all x ∈ obj(C), the diagrams

1D ⊗D F (x) F (1C)⊗D F (x)

F (x) F (1C ⊗C x)

e⊗id

µ

and

F (x)⊗D 1D F (x)⊗D F (1C)

F (x) F (x⊗C 1C)

id⊗e

µ

commute.
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Definition 2. A strong monoidal functor is a lax monoidal functor (F, e, µx,y) such that e and µx,y

are isomorphisms.

Definition 3. Let (C,⊗, 1) be a monoidal category. An algebra object (A,m, u) in C is

• an object A ∈ obj(C),

• a morphism m : A⊗ A → A, and

• a morphism u : 1 → A,

such that

1. (associativity) the diagram

(A⊗ A)⊗ A A⊗ (A⊗ A) A⊗ A

A⊗ A A

a

m⊗id

id⊗m

m

m

commutes, and

2. (unitality) the diagram

1⊗ A A⊗ A A⊗ 1

A

u⊗id

m

id⊗u

commutes.

Note that if A is an algebra object, and F is a lax monoidal functor, then the lax structure of F translates

the multiplication of A into a multiplication on F (A),

F (A)⊗ F (A)
µ−→ F (A⊗ A)

F (m)−−−→ F (A).

Similarly, there is an induced unit

1D
e−→ F (1C)

F (u)−−→ F (A).

Proposition 4. Let (F, e, µx,y) : (C,⊗C, 1C) → (D,⊗D, 1D) be a lax monoidal functor. If (A,m, u) is an

algebra object in C, then (F (A), F (m) ◦ µA,A, F (u) ◦ e) is an algebra object in D.

Proof. For associativity, we need to verify the commutativity of the diagram

(F (A)⊗ F (A))⊗ F (A) F (A)⊗ (F (A)⊗ F (A)) F (A)⊗ F (A)

F (A)⊗ F (A) F (A)

a
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which expands to

(F (A)⊗ F (A))⊗ F (A) F (A)⊗ (F (A)⊗ F (A)) F (A)⊗ F (A⊗ A) F (A)⊗ F (A)

F (A⊗ A)⊗ F (A) F ((A⊗ A)⊗ A) F (A⊗ (A⊗ A)) F (A⊗ A)

F (A)⊗ F (A) F (A⊗ A) F (A).

a

µ⊗id

id⊗µ id⊗F (m)

µ µ

F (m)⊗id

µ

F (m⊗id)

F (a) F (id⊗m)

F (m)

µ F (m)

This diagram is a concatenation of four rectangles. The top left rectangle commutes by associativity of

the lax structure on F . The bottom right rectangle is F applied to the associativity diagram of A, so

it commutes. The top right and bottom left squares commute by naturality of µ, so the entire diagram

commutes.

For the unitality diagram,

1D ⊗ F (A) F (A)⊗ F (A) F (A)⊗ 1D

F (A)

both sides behave the same, so we’ll just consider the left triangle, which expands to

1D ⊗ F (A) F (1C)⊗ F (A) F (A)⊗ F (A)

F (A) F (1C ⊗ A) F (A⊗ A)

e⊗id F (u)⊗id

µ µ

F (u⊗id)

F (m)

which is a concatenation of two squares atop a (curved) triangle. The left square commutes by unitality

of the lax structure of F . The right square commutes by naturality of µ. The bottom triangle is F

applied to the unitality diagram of A, so it commutes. Thus, the entire diagram commutes.

Definition 5. Let (A,m, u) be an algebra object in a monoidal category (C,⊗, 1). A (left) module

(M, s) over A (or A-module) in C is

• an object M ∈ obj(C), and

• a morphism s : A⊗M → M ,

such that

1. (associativity) the diagram
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(A⊗ A)⊗M A⊗ (A⊗M) A⊗M

A⊗M M

a

m⊗id

id⊗s

s

s

commutes, and

2. (unitality) the diagram

1⊗M A⊗M

M

u⊗id

s

commutes.

As above, lax structures translate the action of an algebra A on a module M into an action of F (A) on

F (M),

F (A)⊗ F (M)
µ−→ F (A⊗M)

F (s)−−→ F (M).

Proposition 6. Let (F, e, µx,y) : (C,⊗C, 1C) → (D,⊗D, 1D) be a lax monoidal functor, and let (A,m, u)

be an algebra object in C. If (M, s) is a module over A then (F (M), F (s) ◦µA,M) is a module over F (A).

Proof. The proof is similar to the proof of Proposition 4, but since I don’t know where it’s written, I’ll

write it. For associativity, we need to verify commutativity of the diagram

(F (A)⊗ F (A))⊗ F (M) F (A)⊗ (F (A)⊗ F (M)) F (A)⊗ F (M)

F (A)⊗ F (M) F (M)

a

which expands to

(F (A)⊗ F (A))⊗ F (M) F (A)⊗ (F (A)⊗ F (M)) F (A)⊗ F (A⊗M) F (A)⊗ F (M)

F (A⊗ A)⊗ F (M) F ((A⊗ A)⊗M) F (A⊗ (A⊗M)) F (A⊗M)

F (A)⊗ F (M) F (A⊗M) F (M).

a

µ⊗id

id⊗µ id⊗F (s)

µ µ

F (m)⊗id

µ

F (m⊗id)

F (a) F (id⊗s)

F (s)

µ F (s)

This diagram is a concatenation of four rectangles. The top left rectangle commutes by associativity of

the lax structure on F . The bottom right rectangle is F applied to the associativity diagram of M , so

it commutes. The top right and bottom left squares commute by naturality of µ, so the entire diagram

commutes.

For unitality, the relevant diagram is
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1D ⊗ F (M) F (A)⊗ F (M)

F (M)

which expands to

1D ⊗ F (M) F (1C)⊗ F (M) F (A)⊗ F (M)

F (M) F (1C ⊗M) F (A⊗M)

e⊗id F (u)⊗id

µ µ

F (u⊗id)

F (s)

which is a concatenation of two squares atop a (curved) triangle. The left square commutes by unitality

of the lax structure of F . The right square commutes by naturality of µ. The bottom triangle is F

applied to the unitality diagram of M , so it commutes. Thus, the entire diagram commutes.

We’ve established that lax monoidal functors take algebra objects to algebra objects and modules to

modules. Next, we’d like to say something about the categories of modules over algebra objects.

Definition 7. Let (A,m, u) be an algebra object in a monoidal category (C,⊗, 1), and let (M, s) and

(N, t) be modules over A. A morphism f : M → N in C is called a homomorphism of A-modules if

the diagram

A⊗M M

A⊗N N

s

id⊗f f

t

commutes.

Since compositions of module homomorphisms are module homomorphisms, and identity morphisms of

modules are module homomorphisms, A-modules and their homomorphisms form a subcategory of C,
denoted AMod.

Proposition 8. If f : M → N is a homomorphism of A-modules and F is a lax monoidal functor, then

F (f) is a homomorphism of F (A)-modules.

Proof. We need to verify commutativity of the diagram

F (A)⊗ F (M) F (M)

F (A)⊗ F (N) F (N)

which can be expanded to
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F (A)⊗ F (M) F (A⊗M) F (M)

F (A)⊗ F (N) F (A⊗N) F (N).

id⊗F (f)

µ

F (id⊗f)

F (s)

F (f)

µ F (t)

The left square commutes by naturality of µ, and the right square commutes since f is a homomorphism

of A-modules and F is a functor.

Corollary 9. If F : C → D is a lax monoidal functor and A ∈ obj(C) is an algebra object, then

F (AMod) ⊆ F (A)Mod.

We would like to know when this relationship is stronger than an inclusion. The situation is fairly simple

for isomorphisms of categories.

Lemma 10. If (F, e, µx,y) is a strong monoidal functor such that F : C → D is an isomorphism of cate-

gories, then (F−1, ẽ, µ̃x,y) is a strong monoidal functor, where ẽ = F−1(e−1) and µ̃x,y = F−1(µ−1
F−1(x),F−1(y)).

Proof. First, observe that ẽ and µ̃x,y do indeed have the appropriate domains and codomains. The

associativity and unitality diagrams can be obtained by inverting the arrows of the corresponding diagram

for F and applying F−1 to the whole diagram. Thus, they commute. Naturality of µ̃ follows from similar

considerations.

Proposition 11. Let (F, e, µx,y) be a strong monoidal functor such that F : C → D is an isomorphism

of categories, and let A ∈ obj(C) be an algebra object. Then F restricts to an isomorphism of categories

FA : A Mod → F (A) Mod.

Proof. Since F is an isomorphism, F restricts to an isomorphism A Mod → F (A Mod), so by Corollary

9, we just need to show that F (A) Mod ⊂ F (A Mod). Since F−1 is also a lax monoidal functor by Lemma

10, we can apply Corollary 9 to F−1 and F (A) to obtain the desired inclusion.

A similar fact holds for equivalences of categories, but it is more cumbersome.

Lemma 12. Let (F, e, µx,y) be a strong monoidal functor such that F : C → D is an equivalence of

categories, and let G : D → C be an inverse equivalence with natural isomorphisms α : idC ⇒ GF

and β : FG ⇒ idD. Then (G−1, ẽ, µ̃x,y) is a strong monoidal functor, where ẽ = G(e−1) ◦ α1C and

µ̃x,y = G
(
(βx ⊗ βy) ◦ µ−1

G(x),G(y)

)
◦ αG(x),G(y).

Proof. Similar to Lemma 10, but with more commutative diagrams to unpack due to the extra natural

isomorphisms.

Proposition 13. Let (F, e, µx,y) be a strong monoidal functor such that F : C → D is an equivalence

of categories, and let A ∈ obj(C) be an algebra object. Then F restricts to an equivalence of categories

FA : A Mod → F (A) Mod.

Proof. Since F is an equivalence, F restricts to an equivalence AMod → F (A Mod) ⊆ F (A) Mod. Similarly,

G restricts to an equivalence F (A) Mod → G(F (A) Mod) ⊆ GF (A) Mod ∼= AMod. Thus, G (together with

the natural isomorphisms α, β from Lemma 12) provides an inverse equivalence for FA.
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