Math 199, Fall 2022
Yigal Kamel
10/4/22

Participation assignment 8 - Computing physical quantities

Estimated time: Less than 1 hour.
Point value: 3 points.
Goals: Practice using integrals to compute physical quantities.
A list of physical quantities and formulas for them that you may need to reference:

- Mass: the mass of an object of density ρ and volume V is

$$
m=\rho V .
$$

- Work: the work done when applying a (constant) force F to displace an item by d is

$$
W=F d
$$

- Kinetic energy: the kinetic energy of a particle of mass m moving at speed v is

$$
K=\frac{1}{2} m v^{2} .
$$

- Electric field: The electric field at a point in (1-dimensional) space P produced by a particle with charge q is given by Coulomb's law:

$$
E=\frac{k q}{r^{2}}
$$

where k is a constant of nature, and r is the distance between the particle and the point P.

- Center of mass: $(\bar{x}, \bar{y})=\left(\frac{M_{y}}{m}, \frac{M_{x}}{m}\right)$.

1) You probably (intuitively) know that a force is required to compress a (metal) spring (i.e. shorten its length); think about replacing the batteries of some device. Hooke's law models this force as

$$
F=k x
$$

where k is a constant (characteristic of the spring), and x is the amount the spring is compressed (or stretched), i.e. the change in the spring's length. Find the work required to compress a spring with $k=9$ (Newtons per meter) from a resting length of 1 meter to a compressed length of 0.5 meters.
2) You happen upon a line segment of particles between the points $(-1,1)$ and $(4,2)$ which has total charge $q=10$ (in some irrelevant unit system). Calculate the electric field you would feel (in these fake units) if you were standing at the point $(9,3)$. Bonus: what if you were standing at the origin? (Warning: the formula I gave you for the electric field must be interpreted differently for this.)
3) You find a penny on the table and decide to spin it about one of its diameters (like a top). Suppose we know that the penny completes five full revolutions (i.e. $5 \cdot 2 \pi$ radians) every second. Find the kinetic energy of the penny, where

- the penny is assumed to have no (or constant) thickness,
- the density of the penny is $\frac{5}{2 \pi}$ grams per square centimeter,
- the diameter of the penny is 2 centimeters.

4) Find the center of mass of a thin triangular metal plate in the plane whose vertices are at $(0,0)$, $(3,0)$, and $(2,1)$, where the density of the metal is the constant value $\rho=4$.
