Math 199, Fall 2023
Yigal Kamel
9/15/23

Participation assignment 6-Implicit differentiation

Estimated time: 45-50 minutes.
Point value: 3 points.
Goals: Practice computing derivatives of functions that you don't have an explicit formula for.

1) Compute $\frac{d y}{d t}$ given $y^{2} t^{3}=\sin \left(y^{2}\right)+t^{5}$.
2) Compute $\frac{d^{2} y}{d x^{2}}$ given $x^{2}-y^{2}=1$.
3) Consider the curve defined by $x^{3}+y^{3}=x y^{2}+5$.
(a) Find the equation for the tangent line to the curve at the point $(1,2)$.
(b) At which points on the curve is the tangent line horizontal? At which points is the tangent line vertical?

One tool for doing implicit differentiation is to take a logarithm of both side of the equation first, and then unwind your final answer given that you've done this. Keep this in mind for the following problems.
4) Compute $\frac{d y}{d x}$ given $x^{y}=y^{x}$.
5) Calculate the derivatives of the following functions.
(a) $f(x)=\left(x^{2}+5\right)^{x^{3}}$.
(b) $g(t)=\sin (t)^{\sin (t)}$.
(c) $h(x)=x^{\ln x}$

