Math 199, Fall 2023
Yigal Kamel
8/25/23

Participation assignment 1 - Limits

Estimated time: 50 minutes.
Point value: 3 points.
Goals: Understand limits and how to compute basic examples.

1) Let f be a function and a be a real number.
(a) Explain what the expression $\lim _{x \rightarrow a} f(x)$ means in a way that everyone in your group understands.
(b) What is the difference between $\lim _{x \rightarrow a} f(x)$ and $f(a)$? Try to give a practical example (that is meaningful to you) of a situation where it is useful to think of these two values as different.
(c) Give an example of a function f and a number a for which $\lim _{x \rightarrow a} f(x)=f(a)$, and an example of a function g and a number b for which $\lim _{x \rightarrow b} g(x) \neq g(b)$. Explain.
(d) Give an example of a function for which $f(a)$ exists and $\lim _{x \rightarrow a} f(x)$ does not. Explain.
(e) Give an example of a function for which $\lim _{x \rightarrow a} f(x)$ exists and $f(a)$ does not. Explain.
(f) In you example in (e), can you just define $f(a)$ to be $\lim _{x \rightarrow a} f(x)$?
(g) Give examples of two different kinds of situations where $\lim _{x \rightarrow a} f(x)$ does not exist, but it is still possible to say something meaningful about what the limit of f at a "is".
(h) Give an example of a situation where $\lim _{x \rightarrow a} f(x)$ has no meaning at all.
2) Let $f(x)=\frac{x+3}{x-2}$. Compute the following limits.
(a) $\lim _{x \rightarrow 0} f(x)$
(b) $\lim _{x \rightarrow \infty} f(x)$
(c) $\lim _{x \rightarrow 2} f(x)$
(d) $\lim _{x \rightarrow 2^{-}} f(x)$
(e) $\lim _{x \rightarrow 2^{+}} f(x)$
(f) $\lim _{x \rightarrow-3} f(x)$
(g) $\lim _{x \rightarrow-\infty} f(x)$
(h) Sketch the graph of f.
3) In this problem, we will jump ahead and start doing calculus using limits. Our goal is to compute the slope of the curve $f(x)=x^{2}$ at the point $x=1$ using the zooming in process we discussed last time. If we think of h as a small number, then zooming in on the graph of f between $x=1$ and $x=1+h$ will give us a good approximation of the slope.
(a) Explain why the expression $\frac{f(x+h)-f(x)}{h}$ is a good approximation for the slope of the graph of f near x.
(b) In order to find the exact slope, instead of an approximation, we will take a limit as h gets very small. Find the slope of the graph of f at $x=1$ by computing $\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$.
