Math 199, Fall 2023
Yigal Kamel
11/15/23

Participation assignment 18 - Volumes via integrals

Estimated time: 40-50 minutes.

Point value: 3 points.

Goals: Practice adapting integration to compute volumes of certain specially selected solids.

1) Recall your soup bowl from last week, whose cross-section takes the shape $y=\frac{1}{3} x^{2}$ and extends 6 units wide. Find the maximum volume of soup that can fit in the bowl.
2) Derive the formula for the volume of a sphere of radius R by cutting up the sphere into many thin concentric spherical layers. You can use the fact that the surface area of a sphere of radius r is $A=4 \pi r^{2}$.
3) Derive a formula for the volume of a torus (doughnut) whose cross-sectional circle has radius a and whose central circle has radius b.
4) Derive a formula for the volume of a pyramid with a square base in terms of its side length a and its height h.
5) Consider the region R bounded by the curves $y=e^{x}, x=1, y=0$, and $x=3$. Let D be the solid obtained by revolving R around the line $x=-1$. Set up two integrals, one in terms of x and one in terms of y, that compute the volume of D. Compute at least one of these integrals to find the volume of D.
6) A bead is formed from a sphere of radius 5 by drilling a hole through its diameter with a drill bit of radius 2. Set up two different definite integrals which compute the area of the bead (i.e. one " $d x$ " and one " $d y$ "). Find the volume of the bead.
