Math 199, Fall 2022
Yigal Kamel
11/3/22

Participation assignment 15 - Taylor's theorem

Estimated time: 45 minutes.
Point value: 3 points.
Goals: Understand what Taylor's theorem says, and how to use it to better approximate functions by their Taylor polynomials.

1) What is a Taylor polynomial?
2) State Taylor's theorem.
3) Does Taylor's theorem actually tell you what the error is, when approximating a function by a Taylor polynomial?
4) How can you practically use Taylor's theorem to say something about how well a Taylor polynomial approximates a function on a specified interval?
5) How can you use Taylor's theorem to (potentially) show that a function is equal to its Taylor series?
6) Find the second order Taylor polynomial of $f(x)=\tan x$ centered at $x=\pi$. (We previously called this " $g_{2}(x)$ ", and the notes call it $T_{2}(x)$.)

If we use $T_{2}(x)$ above to approximate $\tan x$ on the interval [2.5,4], what is the maximum possible amount our approximation can be wrong by?

How about on the interval $[2,5]$?
7) Use Taylor's theorem to prove that the Taylor series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converges to e^{x} for every value of x.

