Math 199, Fall 2023
Yigal Kamel
10/25/23

Participation assignment 12 - Antiderivatives

Estimated time: 30-50 minutes.
Point value: 3 points.
Goals: Start looking at some examples of antiderivatives, how to compute them in certain cases, and how to understand them.

1) Suppose $f^{\prime}(x)=0$. What could $f(x)$ be?
2) Suppose $f^{\prime}(x)=g^{\prime}(x)$, use problem (1) to conclude what $f(x)-g(x)$ can be.
3) If we know the derivative of a function, how much can we know (in theory) about the function itself? Use your answer to (2) to help analyze this.
4) To rephrase problem (3), how many antiderivatives does a general function have?
5) Let's get comfortable taking antiderivatives of some simple functions.
(a) Recall the power rule for taking derivatives:

$$
\frac{d}{d x} x^{n}=
$$

(b) Use this to find the "anti"-power rule:

$$
\frac{d}{d x}(\quad)=x^{n}
$$

(c) Find an antiderivative of $f(x)=x^{2}+1$.
(d) Find an antiderivative of $f(x)=3 x^{3}-\frac{1}{2} x^{2}+x$.
(e) Find an antiderivative of $f(x)=\left(5 x^{3}+3 x-2\right) x-\cos (x)$.
6) There is one value of n for which the "anti"-power rule doesn't give the correct answer. Which value is it, and what is the correct antiderivative for that value of n ? Hint: There is also one value of n (not necessarily the same one) for which the ordinary power rule doesn't apply. Which one?
7) Find an antiderivative of $f(x)=e^{x}+\frac{2}{x}-\sin x$.
8) What is an antiderivative of $f(x)=2^{3 x}$?

