K(1) - local homotopy theory

References:

· Barthel-Beaudry, "Chromatic structures in Stable homotopy theory." Raverel, "Localization with respect to certain periodic homology theories". • Henn, "A mini-course on Moreive Stabilizer groups and their cohomology."

Topology -> classify spaces up to homeomorphism Too HARD!

Homotopy ->

" " homotopy equivalence mind of still too hard cw complexes (or: weak equivalences)

TOP 2 W = subcategory of weak honotopy equivalences
Top[W-1] (model cats/so-cats)
Similarly, Sp = Spectra [W-1]
Lo still have for now - homology
$E = Spectrum / honology filling E quilleW_E = {X + Y E_* f: E_* X - E_* Y 150 } {$

(Sulliven, Adams) Bousfield let E be a spectrum. J! LE: Sp -> Sp with N: Idsp => LE such that • $(\eta_X: X \rightarrow L_E X) \in W_E$ $\begin{array}{c} W^{E_{\mathfrak{I}}} \stackrel{A}{\to} \stackrel$

A If E (or X) is not concerture, then LEX is not related to X by "localizing the homotopy groups" e.g. $\pi_{-2} L \kappa u S^{\circ} \cong \mathbb{Q}/\mathbb{Z}$ (LKCI) S° also not connective) A LESP not cocomplete LE doesn't commute with limits.

The Bousfield Lattree · (E) := equiv class maler E~F <> LE = LF. $\langle \Rightarrow \langle E_* X = O \rangle \langle = \rangle F_* X = O \rangle$ • $\langle E \rangle \leq \langle F \rangle$ if $(F_* \chi = 0 \implies E_* \chi = 0)$. -> 1 & V descuel to <->. -> lattice DL 2 Booleon algebra BA Ex: • $\langle S^{\circ} \rangle \ge \langle MU \rangle \ge \langle BP \rangle \ge \langle BP \langle n \rangle \rangle \ge \langle E(n) \rangle \ge \langle K(n) \rangle$ • $\underline{m \neq n}$: $\langle K(n) \rangle \& \langle K(m) \rangle$ not comparable $\& \Lambda = \langle O \rangle$

<u>Recall</u> : $\pi_* BP = \mathbb{Z}_{(p)} [v_1, v_2, \dots] \longrightarrow BP(n), k(n)$
• $\mathcal{N}_{\star} BP(n) = BP_{\star}/(v_{n+1},)$
• 71, k(n) = BP*/(p, v1,, Vn-1, Vn+1))
• E(n) = v_ 'BP(n) "Morava E-theory"
• K(n) = Vn' k(n) Morava K-theory
$\frac{Thm}{E(n)} = \langle v_n^{-1} BP \rangle = \bigvee_{m=1}^n \langle K(m) \rangle$
Moral: K(n)'s are (not) "atoms" of Sp.

$$E(1) - local honotopy theory
Ku(p) = $\bigvee_{i=1}^{p-1} E(1) \Rightarrow L_{1} := L_{E(1)} = L_{Ku_{ip}}$
In fact, $\langle KU \rangle = \langle KO \rangle \Rightarrow L_{1} = L_{KO_{(p)}}$
"height 1 honotopy theory is topological K theory"
[Thm: (smooth product thm)]
 $L_{1}X \simeq X \land L_{1}S^{\circ}$.
 $\Rightarrow L_{1}Sp$ complete & L_{1} commutes w/ colimits.$$

 $\begin{bmatrix} Cor : E = homology theory, (e.g. BP) \\ E \land L, X \cong X \land L, E \end{bmatrix}$ Pf: apply S.P.T. to X on left & E on right. // Lo let's us compute homology on L, Sp E_{X} if $BP_{X} \otimes Q = 0$, the $BP_*L_X \cong v_1^{-1}BP_*X$ -> But still read to know L. S.

The E(1)-local sphere S.P.T. -> L, S° ~ L, L, S° ~ L, S° mo L, So ring spectrum $\left(\begin{array}{c}
 \mathbb{Z}_{(p)}, & i = 0 \\
 \mathbb{Q}/\mathbb{Z}_{(p)}, & i = -2
\end{array}\right)$ Thm: P>2.r: L, S° = $\mathbb{Z}/p^{j(i)}$, $i = sp^{k}(2p-2) - 1, p \nmid s$ lo de = mage of M*S detected by Ext BP&BP(BP*, BP*) in ANSS

P=2.

 $\pi_{L}L, S^{\circ} =$

 $\mathbb{Z}_{(2)} \oplus \mathbb{Z}_{/2}$ 1=0 @/Z(2)) i = -2 $Z_{(2)}/2s$, i=8s-1, $s\neq 0$ 1/2 , (= 85, S≠0 $\mathbb{Z}/_2 \oplus \mathbb{Z}/_2$, i = 8s + 1i = 8s + 27/2) i = 8s + 37/8, else 0,

 $\frac{\text{Thm: } P>2}{\text{Tri} L_{kin}}S^{\circ} =$

T_cL₁S°, i = 0, -1i = -2else

P=2.

 $\pi_i L_{\kappa(i)} S^{\circ} =$

 $\begin{cases} \mathbb{Z}_{2} \oplus \mathbb{Z}/2 , & i = 0 \\ \mathbb{Z}_{2} , & i = -1 \\ \mathbb{Z}/2^{j(s)} , & i = 8s - 1 , i \neq -1 \\ 0 , & i = -2 \\ \mathbb{N}_{i}L_{i}S^{\circ} , & else \end{cases}$

The Morava Stabilizer group $\mathbb{G}^{1} = \mathbb{Z}^{1} = \mathbb{Z}^{k}$ ~ Adams operations in K-theory • Even though Ravered did it already, Can also use (D-H) $L_{K(1)}S^{\circ} \xrightarrow{\sim} K^{h Z p^{\times}}$ to compute #x Lk(1) 5° vie K-A.S.S. · Can also use a finite resolution.

Iden: decompose
$$L_{K(I)}S^{\circ} \simeq K^{h \times Zp^{\times}}$$
 more.
Overview of the strategy
 D exact sequence of \mathbb{Z}_{p}^{\times} -modules
resolving \mathbb{Z}_{p} my apply then $(-, K_{\times})$
 \Rightarrow s.e.s. of "Moreover modules".
2) Realize above as a fiber sequence
of K(I)-local spectra.
4 May not exist in gural, use industanding
of K(I) to construct.

Example

 $\mathbb{Z}_p^{\times} \cong \mu \times \mathbb{Z}_p$ where $\frac{P > 2}{\mu} : \mu = C_{p-1}, \quad \mathbb{Z}_p = \left\{ \alpha \in \mathbb{Z}_p^{\times} \mid \alpha \equiv 1 \pmod{p} \right\}$ <u>P=2:</u> $M = C_2$, $\mathbb{Z}_2 = \{a \in \mathbb{Z}_2^{\times} | a = 1 \pmod{4}\}$ $\Rightarrow L_{K(I)}S^{\circ} \simeq (K^{h_{\mu}})^{h_{Z_{P}}}$ VEZp "top'l guerator" (Adams operation)