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Most of the content in this talk can be found in Segal’s thesis Equivariant K-theory [4]. I

also learned some of the material from Atiyah’s K-theory [1].

1 Motivation

Recall, if (A,⊕) is a commutative monoid, then

K(A) := F (A)/⟨a+ b− a⊕ b⟩

is an abelian group. When A is also a semiring, K(A) is a ring.

Last time, we introduced the representation ring of a group G, defined as

R(G) := K(Rep(G)),

where Rep(G) is the semiring of isomorphism classes of representations of G under direct

sum and tensor product. Similarly, the K-theory of a space X is

K(X) := K(Vect(X)),

where Vect(X) is the semiring of isomorphism classes of complex vector bundles over X

under direct sum and tensor product. There is a classifying space functor B : Group → Top,

that associates to a group G, a space BG that classifies principal G-bundles. It is natural

to ask how the two functors R and K compare after passing through B. In other words,

Question 1.1. What is the relationship between R(G) and K(BG)?

We can start to make progress on this question by considering the universal G-bundle

π : EG → BG.

Given a representation ρ : G → GL(Cn), we can form the vector bundle

πρ : EG×G Cn → BG

as the quotient by the diagonal action of G on EG×Cn. The association ρ 7→ πρ induces a

ring homomorphism

R(G) → K(BG).

In order to go further, we’ll want to combine R and K into a single functor that contains

both representation theoretic and topological information. A convenient domain for such a

functor is the category, RTop, of group actions on spaces. The objects of RTop are G-spaces,

for all groups G, and the morphisms are group homomorphisms, equivariant continuous

maps, and their compositions.
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2 Equivariant K-theory

As indicated above, we seek a functor K(−)(−) : RTopop → Ring, called equivariant K-theory,

which fits into the following diagram.

Groupop

Groupop × Topop RTopop Ring

Topop

id×∗

R

trivial action K(−)(−)

∗×id

K

The value of K(−)(−) on a G-space X is written KGX, suppressing the action from the

notation, and the above diagram commuting means that

KG(X) =

{
R(G), X = ∗
K(X), G = ∗.

In fact, when restricting to the category of trivial actions, we’ll haveKG(X) ∼= R(G)⊗K(X).

Definition 2.1. Let X be a G-space. A G-vector bundle over X is a G-map p : E → X,

such that

• p has the structure of a vector bundle;

• for all g ∈ G, the map g : Ex → Egx is linear.

Example 2.2. If X is a smooth manifold and G acts smoothly on X, then TX ⊗ C is a

G-vector bundle on X.

Example 2.3. If E → X is an ordinary vector bundle, then E⊗n := E ⊗ · · · ⊗ E → X is a

Σn-vector bundle, where Σn permutes the factors of E⊗n and acts trivially on X.

Notice that VectG(X) := {isomorphism classes of G-vector bundles over X} is a semiring

under direct sum and tensor product.

Definition 2.4. The equivariant K-theory of a G-space X is

KG(X) := K(VectG(X)).

Remark 2.5 (functoriality). If f : X → Y is a G-map of G-spaces, then pullback induces

a map f ∗ : KG(Y ) → KG(X). Similarly, a homomorphism of groups φ : H → G induces a

map φ∗ : KG(X) → KH(X) by restricting a G-action to H via φ. Under these assignments,

K(−)(−) is a functor.
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Remark 2.6 (homotopy invariance). If f0, f1 : X → Y are G-homotopic (i.e. homotopic

via a homotopy that is also a G-map, where the action on X × I is induced by the trivial

action on I), then f ∗
0 = f ∗

1 .

Example 2.7. If G is the trivial group, then a G-vector bundle is the same as a vector

bundle, so KG(X) = K(X).

Example 2.8. If X is a one point space, then a vector bundle is the same as a vector space.

Thus, a G-vector bundle is a representation of G, so KG(X) = R(G).

Example 2.9. If X is a trivial G-space, then the action of G on the total space of a G-vector

bundle restricts to actions on each fiber. This leads to two apparent inclusions,

i : Rep(G)

VectG(X)

j : Vect(X)

trivial bundle

trivial action

where i takes a representation M , to the trivial bundle M := X×M , and j endows a vector

bundle E with a trivial G-action.

Theorem 2.10. Let X be a trivial G-space. The map ĩ ⊗ j̃ : R(G) ⊗ K(X) → KG(X)

induced by the inclusions i and j above, is an isomorphism of rings.

Proof idea: To define an inverse ν : KG(X) → R(G) ⊗K(X), note that each fiber Ex of a

G-vector bundle E on X is a representation of G, and can therefore be expressed as a linear

combination of irreducible representations

Ex
∼=

⊕
irrep’s M

M ⊗ HomG(M,Ex).

Following this, we define

ν(E) =
⊕

irrep’s M

M⊗ HomG(M, E).

The fact that ν is the inverse of ĩ⊗ j̃ follows from the fact that a fiberwise isomorphism of

vector bundles is an isomorphism.

Example 2.11. In Example 2.3, we constructed a map K(X) → KΣn(X) given by the nth

tensor power of a vector bundle. In light of Theorem 2.10, this gives a homomorphism

K(X) → R(Σn)⊗K(X).

A choice of homomorphism R(Σn) → Z results in an endomorphism of K(X). Since this

construction is natural in X, we get a map

Hom(R(Σn),Z) → Op(K).

The image of this map consists of the power operations in K-theory.
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3 KG as equivariant cohomology

We start by indicating that, like K-theory, equivariant K-theory deserves to be considered

a cohomology theory.

Definition 3.1. Let (X, ∗) be a pointed G-space, and A ⊂ X a closed G-subspace.

• K̃G(X) := ker(KG(X)
i∗−→ KG(∗)), where i : ∗ → X is the inclusion;

• K̃−q
G (X) := K̃G(S

qX);

• K̃−q
G (X,A) := K̃G(S

q(X
∐

A CA)).

When X is not pointed, define

• K−q
G (X) := K̃−q

G (X
∐

∗);
• K−q

G (X,A) := K̃−q
G (X

∐
∗, A

∐
∗).

With these definitions, we have a long exact sequence

· · · → K̃−q
G (X,A) → K̃−q

G (X) → K̃−q
G (A) → K̃−q+1

G (X,A) → · · · .

Example 3.2. We know that K0
S1(∗) = KS1(∗) ∼= R(S1) ∼= Z[x, x−1]. In degree −1:

K−1
S1 (∗) ∼= K̃−1

S1 (S
0) ∼= K̃S1(S1) = ker(KS1(S1) → KS1(∗)).

Here, the action of S1 on S1 is trivial, since it is induced by the suspension of S0. By

Theorem 2.10,

KS1(S1) ∼= R(S1)⊗K(S1) ∼= R(S1)⊗ (Z⊕(Z /2)) ∼= R(S1)⊕ (R(S1)⊗ Z /2) ∼= R(S1),

since R(S1)⊗ Z /2 ∼= Z[x, x−1]⊗ Z /2 = 0. Thus, the restriction map

R(G) ∼= KS1(S1) → KS1(∗) ∼= R(G)

is an isomorphism, and hence has no kernel. So K−1
S1 (∗) = 0.

The following theorem justifies regarding KG as the G-equivariant verison of the cohomology

theory K.

Theorem 3.3. Suppose G acts on X freely. Then

KG(X) ∼= K(X/G)

Example 3.4. For any Lie group G, KG(G) ∼= K(∗) ∼= Z. More generally, if H ≤ G is a

closed subgroup, then KG(G/H) ∼= KH(∗) ∼= R(H).
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Theorem 3.3 indicates that the relationship between KG and K is similar to the relationship

between ordinary (Borel) equivariant cohomology H∗
G and ordinary cohomology H∗. In the

ordinary case, when the action of G on X is free, we define

H∗
G(X) := H∗(X/G).

When the action is not free, we still use this idea to define H∗
G(X), by replacing X with a

(homotopy equivalent) G-space for which the action is free. More specifically, consider the

total space EG of the universal bundle over BG. Then EG is contractible and is a free

G-space. Define

XG := EG×G X = (EG×X)/G.

The space XG acts as a replacement for X/G, and we define

H∗
G(X) := H∗(XG).

In analogy with the ordinary case, we can consider the ring K∗(XG) and ask how it compares

with our definition of equivariant K-theory.

Question 3.5. What is the relationship between K∗
G(X) and K∗(XG)?

As in our initial discussion of Question 1.1, we can construct a map VectG(X) → Vect(XG),

as follows: A G-vector bundle E → X comes with an action of G, so we can apply −×GEG

to both E and X to get a vector bundle E ×G EG → XG.

Theorem 3.6 (Atiyah-Segal [3]). If K∗
G(X) is a finitely generated R(G)-module, the map

K∗
G(X) → K∗(XG) induces an isomorphism

lim
n

(
K∗

G(X)/InG ·K∗
G(X)

)
∼−→ K∗(XG),

where IG is the kernel of the degree homomorphism R(G) → Z induced by the dimension of

a representation.

The ideal IG is also known as the augmentation ideal of R(G), and the limit of quotients

K∗
G(X)ÎG := limn(K

∗
G(X)/InG · K∗

G(X)) is called the completion of K∗
G(X) with respect to

the augmentation ideal. Since K∗
G(X)ÎG can be recovered from K∗

G(X), we see that K∗(XG)

contains only part of the information that K∗
G(X) does.

Example 3.7. Let X = ∗. Then K∗
G(X) = R(G) and XG = EG/G ∼= BG, so

K∗(BG) ∼= R(G)ÎG ,

answering Question 1.1.
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4 The Thom isomorphism and Bott periodicity

Recall [2] that one way to describe classes in relative K-theory is with chain complexes of

vector bundles. Specifically,

K(X,A) ∼= L(X,A)/ ∼

where L(X,A) is the set of chain complexes of vector bundles over X which are acyclic

except on a compact set contained in X \ A, and ∼ is a certain type of homotopy relation.

The situation is no different in the G-equivariant setting: we can write

KG(X,A) ∼= LG(X,A)/ ∼

where the chain complexes in LG(X, Y ) consist of G-vector bundles. We will use this chain

complex representation of KG to define the Thom isomorphism.

Given a G-vector bundle p : E → X, we can form the pullback of E along p to get a G-vector

bundle p∗E over E:

p∗E E

E X.

p

p

There is a canonical section δ : E → p∗E given by the diagonal. We can form a chain

complex

Λ•
E = · · · → 0 → C d−→ Λ1p∗E

d−→ Λ2p∗E → · · ·

where d is defined on Λip∗Ex by d(ξ) = ξ ∧ δ(x). Then Λ•
E represents a class [Λ•

E] ∈ KG(E),

and we can define a map

Th : KG(X) → KG(E)

called the Thom homomorphism by

Th([F •]) = [Λ•
E ⊗ p∗F •].

Theorem 4.1 (Thom isomorphism [4]). For any G-vector bundle E on a locally compact

G-space X, the Thom homomorphism

Th : KG(X) → KG(E)

is an isomorphism.

Corollary 4.2 (Bott periodicity). Under the assumptions of Theorem 4.1,

K−q
G (X) ∼= K−q−2

G (X).

To see this, apply Theorem 4.1 to the trivial bundle X ×C. The degree shift is by 2 due to

the fact that C has 2 real dimensions.
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