Equivariant K-theory

Yigal Kamel
September 2022
Most of the content in this talk can be found in Segal's thesis Equivariant K-theory [4]. I also learned some of the material from Atiyah's K-theory [1].

1 Motivation

Recall, if (A, \oplus) is a commutative monoid, then

$$
K(A):=F(A) /\langle a+b-a \oplus b\rangle
$$

is an abelian group. When A is also a semiring, $K(A)$ is a ring.

Last time, we introduced the representation ring of a group G, defined as

$$
R(G):=K(\operatorname{Rep}(G))
$$

where $\operatorname{Rep}(G)$ is the semiring of isomorphism classes of representations of G under direct sum and tensor product. Similarly, the K-theory of a space X is

$$
K(X):=K(\operatorname{Vect}(X))
$$

where $\operatorname{Vect}(X)$ is the semiring of isomorphism classes of complex vector bundles over X under direct sum and tensor product. There is a classifying space functor B : Group \rightarrow Top, that associates to a group G, a space $B G$ that classifies principal G-bundles. It is natural to ask how the two functors R and K compare after passing through B. In other words,

Question 1.1. What is the relationship between $R(G)$ and $K(B G)$?
We can start to make progress on this question by considering the universal G-bundle

$$
\pi: E G \rightarrow B G
$$

Given a representation $\rho: G \rightarrow G L\left(\mathbb{C}^{n}\right)$, we can form the vector bundle

$$
\pi_{\rho}: E G \times{ }_{G} \mathbb{C}^{n} \rightarrow B G
$$

as the quotient by the diagonal action of G on $E G \times \mathbb{C}^{n}$. The association $\rho \mapsto \pi_{\rho}$ induces a ring homomorphism

$$
R(G) \rightarrow K(B G)
$$

In order to go further, we'll want to combine R and K into a single functor that contains both representation theoretic and topological information. A convenient domain for such a functor is the category, RTop, of group actions on spaces. The objects of RTop are G-spaces, for all groups G, and the morphisms are group homomorphisms, equivariant continuous maps, and their compositions.

2 Equivariant K-theory

As indicated above, we seek a functor $K_{(-)}(-):$RTop ${ }^{\text {op }} \rightarrow$ Ring, called equivariant K-theory, which fits into the following diagram.

The value of $K_{(-)}(-)$on a G-space X is written $K_{G} X$, suppressing the action from the notation, and the above diagram commuting means that

$$
K_{G}(X)= \begin{cases}R(G), & X=* \\ K(X), & G=*\end{cases}
$$

In fact, when restricting to the category of trivial actions, we'll have $K_{G}(X) \cong R(G) \otimes K(X)$.
Definition 2.1. Let X be a G-space. A G-vector bundle over X is a G-map $p: E \rightarrow X$, such that

- p has the structure of a vector bundle;
- for all $g \in G$, the map $g: E_{x} \rightarrow E_{g x}$ is linear.

Example 2.2. If X is a smooth manifold and G acts smoothly on X, then $T X \otimes \mathbb{C}$ is a G-vector bundle on X.

Example 2.3. If $E \rightarrow X$ is an ordinary vector bundle, then $E^{\otimes n}:=E \otimes \cdots \otimes E \rightarrow X$ is a Σ_{n}-vector bundle, where Σ_{n} permutes the factors of $E^{\otimes n}$ and acts trivially on X.

Notice that $\operatorname{Vect}_{G}(X):=\{$ isomorphism classes of G-vector bundles over $X\}$ is a semiring under direct sum and tensor product.

Definition 2.4. The equivariant K-theory of a G-space X is

$$
K_{G}(X):=K\left(\operatorname{Vect}_{G}(X)\right)
$$

Remark 2.5 (functoriality). If $f: X \rightarrow Y$ is a G-map of G-spaces, then pullback induces a map $f^{*}: K_{G}(Y) \rightarrow K_{G}(X)$. Similarly, a homomorphism of groups $\varphi: H \rightarrow G$ induces a $\operatorname{map} \varphi^{*}: K_{G}(X) \rightarrow K_{H}(X)$ by restricting a G-action to H via φ. Under these assignments, $K_{(-)}(-)$is a functor.

Remark 2.6 (homotopy invariance). If $f_{0}, f_{1}: X \rightarrow Y$ are G-homotopic (i.e. homotopic via a homotopy that is also a G-map, where the action on $X \times I$ is induced by the trivial action on I), then $f_{0}^{*}=f_{1}^{*}$.

Example 2.7. If G is the trivial group, then a G-vector bundle is the same as a vector bundle, so $K_{G}(X)=K(X)$.

Example 2.8. If X is a one point space, then a vector bundle is the same as a vector space. Thus, a G-vector bundle is a representation of G, so $K_{G}(X)=R(G)$.

Example 2.9. If X is a trivial G-space, then the action of G on the total space of a G-vector bundle restricts to actions on each fiber. This leads to two apparent inclusions,

where i takes a representation M, to the trivial bundle $\mathbf{M}:=X \times M$, and j endows a vector bundle E with a trivial G-action.

Theorem 2.10. Let X be a trivial G-space. The map $\tilde{i} \otimes \tilde{j}: R(G) \otimes K(X) \rightarrow K_{G}(X)$ induced by the inclusions i and j above, is an isomorphism of rings.

Proof idea: To define an inverse $\nu: K_{G}(X) \rightarrow R(G) \otimes K(X)$, note that each fiber E_{x} of a G-vector bundle E on X is a representation of G, and can therefore be expressed as a linear combination of irreducible representations

$$
E_{x} \cong \bigoplus_{\text {irrep's } M} M \otimes \operatorname{Hom}_{G}\left(M, E_{x}\right)
$$

Following this, we define

$$
\nu(E)=\bigoplus_{\text {irrep's } M} \mathbf{M} \otimes \operatorname{Hom}_{G}(\mathbf{M}, E)
$$

The fact that ν is the inverse of $\tilde{i} \otimes \tilde{j}$ follows from the fact that a fiberwise isomorphism of vector bundles is an isomorphism.

Example 2.11. In Example 2.3, we constructed a map $K(X) \rightarrow K_{\Sigma_{n}}(X)$ given by the nth tensor power of a vector bundle. In light of Theorem 2.10, this gives a homomorphism

$$
K(X) \rightarrow R\left(\Sigma_{n}\right) \otimes K(X)
$$

A choice of homomorphism $R\left(\Sigma_{n}\right) \rightarrow \mathbb{Z}$ results in an endomorphism of $K(X)$. Since this construction is natural in X, we get a map

$$
\operatorname{Hom}\left(R\left(\Sigma_{n}\right), \mathbb{Z}\right) \rightarrow \operatorname{Op}(K)
$$

The image of this map consists of the power operations in K-theory.

$3 \quad K_{G}$ as equivariant cohomology

We start by indicating that, like K-theory, equivariant K-theory deserves to be considered a cohomology theory.

Definition 3.1. Let $(X, *)$ be a pointed G-space, and $A \subset X$ a closed G-subspace.

- $\tilde{K}_{G}(X):=\operatorname{ker}\left(K_{G}(X) \xrightarrow{i^{*}} K_{G}(*)\right)$, where $i: * \rightarrow X$ is the inclusion;
- $\tilde{K}_{G}^{-q}(X):=\tilde{K}_{G}\left(S^{q} X\right)$;
- $\tilde{K}_{G}^{-q}(X, A):=\tilde{K}_{G}\left(S^{q}\left(X \coprod_{A} C A\right)\right)$.

When X is not pointed, define

- $K_{G}^{-q}(X):=\tilde{K}_{G}^{-q}(X \coprod *)$;
- $K_{G}^{-q}(X, A):=\tilde{K}_{G}^{-q}(X \coprod *, A \coprod *)$.

With these definitions, we have a long exact sequence

$$
\cdots \rightarrow \tilde{K}_{G}^{-q}(X, A) \rightarrow \tilde{K}_{G}^{-q}(X) \rightarrow \tilde{K}_{G}^{-q}(A) \rightarrow \tilde{K}_{G}^{-q+1}(X, A) \rightarrow \cdots
$$

Example 3.2. We know that $K_{S^{1}}^{0}(*)=K_{S^{1}}(*) \cong R\left(S^{1}\right) \cong \mathbb{Z}\left[x, x^{-1}\right]$. In degree -1 :

$$
K_{S^{1}}^{-1}(*) \cong \tilde{K}_{S^{1}}^{-1}\left(S^{0}\right) \cong \tilde{K}_{S^{1}}\left(S^{1}\right)=\operatorname{ker}\left(K_{S^{1}}\left(S^{1}\right) \rightarrow K_{S^{1}}(*)\right)
$$

Here, the action of S^{1} on S^{1} is trivial, since it is induced by the suspension of S^{0}. By Theorem 2.10,

$$
K_{S^{1}}\left(S^{1}\right) \cong R\left(S^{1}\right) \otimes K\left(S^{1}\right) \cong R\left(S^{1}\right) \otimes(\mathbb{Z} \oplus(\mathbb{Z} / 2)) \cong R\left(S^{1}\right) \oplus\left(R\left(S^{1}\right) \otimes \mathbb{Z} / 2\right) \cong R\left(S^{1}\right),
$$

since $R\left(S^{1}\right) \otimes \mathbb{Z} / 2 \cong \mathbb{Z}\left[x, x^{-1}\right] \otimes \mathbb{Z} / 2=0$. Thus, the restriction map

$$
R(G) \cong K_{S^{1}}\left(S^{1}\right) \rightarrow K_{S^{1}}(*) \cong R(G)
$$

is an isomorphism, and hence has no kernel. So $K_{S^{1}}^{-1}(*)=0$.
The following theorem justifies regarding K_{G} as the G-equivariant verison of the cohomology theory K.

Theorem 3.3. Suppose G acts on X freely. Then

$$
K_{G}(X) \cong K(X / G)
$$

Example 3.4. For any Lie group $G, K_{G}(G) \cong K(*) \cong \mathbb{Z}$. More generally, if $H \leq G$ is a closed subgroup, then $K_{G}(G / H) \cong K_{H}(*) \cong R(H)$.

Theorem 3.3 indicates that the relationship between K_{G} and K is similar to the relationship between ordinary (Borel) equivariant cohomology H_{G}^{*} and ordinary cohomology H^{*}. In the ordinary case, when the action of G on X is free, we define

$$
H_{G}^{*}(X):=H^{*}(X / G)
$$

When the action is not free, we still use this idea to define $H_{G}^{*}(X)$, by replacing X with a (homotopy equivalent) G-space for which the action is free. More specifically, consider the total space $E G$ of the universal bundle over $B G$. Then $E G$ is contractible and is a free G-space. Define

$$
X_{G}:=E G \times_{G} X=(E G \times X) / G
$$

The space X_{G} acts as a replacement for X / G, and we define

$$
H_{G}^{*}(X):=H^{*}\left(X_{G}\right)
$$

In analogy with the ordinary case, we can consider the ring $K^{*}\left(X_{G}\right)$ and ask how it compares with our definition of equivariant K-theory.

Question 3.5. What is the relationship between $K_{G}^{*}(X)$ and $K^{*}\left(X_{G}\right)$?
As in our initial discussion of Question 1.1, we can construct a map $\operatorname{Vect}_{G}(X) \rightarrow \operatorname{Vect}\left(X_{G}\right)$, as follows: A G-vector bundle $E \rightarrow X$ comes with an action of G, so we can apply $-\times_{G} E G$ to both E and X to get a vector bundle $E \times{ }_{G} E G \rightarrow X_{G}$.

Theorem 3.6 (Atiyah-Segal [3]). If $K_{G}^{*}(X)$ is a finitely generated $R(G)$-module, the map $K_{G}^{*}(X) \rightarrow K^{*}\left(X_{G}\right)$ induces an isomorphism

$$
\lim _{n}\left(K_{G}^{*}(X) / I_{G}^{n} \cdot K_{G}^{*}(X)\right) \xrightarrow{\sim} K^{*}\left(X_{G}\right),
$$

where I_{G} is the kernel of the degree homomorphism $R(G) \rightarrow \mathbb{Z}$ induced by the dimension of a representation.

The ideal I_{G} is also known as the augmentation ideal of $R(G)$, and the limit of quotients $K_{G}^{*}(X)_{\hat{I}_{G}}:=\lim _{n}\left(K_{G}^{*}(X) / I_{G}^{n} \cdot K_{G}^{*}(X)\right)$ is called the completion of $K_{G}^{*}(X)$ with respect to the augmentation ideal. Since $K_{G}^{*}(X)_{\hat{I}_{G}}$ can be recovered from $K_{G}^{*}(X)$, we see that $K^{*}\left(X_{G}\right)$ contains only part of the information that $K_{G}^{*}(X)$ does.

Example 3.7. Let $X=*$. Then $K_{G}^{*}(X)=R(G)$ and $X_{G}=E G / G \cong B G$, so

$$
K^{*}(B G) \cong R(G)_{\hat{I}_{G}}
$$

answering Question 1.1.

4 The Thom isomorphism and Bott periodicity

Recall [2] that one way to describe classes in relative K-theory is with chain complexes of vector bundles. Specifically,

$$
K(X, A) \cong L(X, A) / \sim
$$

where $L(X, A)$ is the set of chain complexes of vector bundles over X which are acyclic except on a compact set contained in $X \backslash A$, and \sim is a certain type of homotopy relation. The situation is no different in the G-equivariant setting: we can write

$$
K_{G}(X, A) \cong L_{G}(X, A) / \sim
$$

where the chain complexes in $L_{G}(X, Y)$ consist of G-vector bundles. We will use this chain complex representation of K_{G} to define the Thom isomorphism.

Given a G-vector bundle $p: E \rightarrow X$, we can form the pullback of E along p to get a G-vector bundle $p^{*} E$ over E :

There is a canonical section $\delta: E \rightarrow p^{*} E$ given by the diagonal. We can form a chain complex

$$
\Lambda_{E}^{\bullet}=\cdots \rightarrow 0 \rightarrow \mathbb{C} \xrightarrow{d} \Lambda^{1} p^{*} E \xrightarrow{d} \Lambda^{2} p^{*} E \rightarrow \cdots
$$

where d is defined on $\Lambda^{i} p^{*} E_{x}$ by $d(\xi)=\xi \wedge \delta(x)$. Then Λ_{E}^{\bullet} represents a class $\left[\Lambda_{E}^{\bullet}\right] \in K_{G}(E)$, and we can define a map

$$
\mathrm{Th}: K_{G}(X) \rightarrow K_{G}(E)
$$

called the Thom homomorphism by

$$
\operatorname{Th}\left(\left[F^{\bullet}\right]\right)=\left[\Lambda_{E}^{\bullet} \otimes p^{*} F^{\bullet}\right] .
$$

Theorem 4.1 (Thom isomorphism [4]). For any G-vector bundle E on a locally compact G-space X, the Thom homomorphism

$$
\mathrm{Th}: K_{G}(X) \rightarrow K_{G}(E)
$$

is an isomorphism.
Corollary 4.2 (Bott periodicity). Under the assumptions of Theorem 4.1,

$$
K_{G}^{-q}(X) \cong K_{G}^{-q-2}(X)
$$

To see this, apply Theorem 4.1 to the trivial bundle $X \times \mathbb{C}$. The degree shift is by 2 due to the fact that \mathbb{C} has 2 real dimensions.

References

[1] Atiyah, M. F., K-theory.
[2] Atiyah, M. F., Bott, R., and Shapiro, A., Clifford modules.
[3] Atiyah, M. F., Segal, G., Equivariant K-theory and completion.
[4] Segal, G., Equivariant K-theory.

