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1 Localization

Definition 1. (7.1.1 E∗-acyclic, E∗-equivalence, E∗-local) A spectrum X is E∗-acyclic if E∗X = 0. A map
f : X → Y is an E∗-equivalence if it induces an isomorphism in E∗-homology. A spectrum Y is E∗-local if for
each E∗-acyclic spectrum X, we have [X,Y ] = 0.

Definition 2. (7.1.1 E∗-localization) An E∗-localization functor LE is a covariant functor that takes a spec-
trum X to a E∗-local spectrum LEX along with a natural transformation η : idS → LE such that

1. ηX : X → LEX is an E∗-equivalence.

2. For any E∗-equivalence f : X → Y , there is g : Y → LEX such that gf = ηX . In other words, ηX is the
terminal E∗-equivalence from X.

Proposition 3. (7.1.2 Properties of E∗-locality)

1. Any inverse limit preserves E∗-locality.

2. In a cofiber sequence W → X → Y , if any two are E∗-local, so is the third.

3. Wedge summands preserve E∗-locality, i. e. if X ∨ Y is E∗-local, so are X or Y .

Proposition 4. (Properties of LE)

1. LE is unique.

2. LE is idempotent, i. e. LELE = LE

3. Any f : X → Y where Y is E∗-local factors through LEX. In other words, LEX is the initial object that
is E∗-local and mapped to from X.

Proposition 5. Let E∗ and F∗ be generalized homology theories such that E∗X = 0 implies F∗X = 0. Then
if a spectrum Y is F∗-local, it is E∗-local. In particular, if E∗X = 0 iff F∗X = 0, then the functors LE and
LF are the same.

Theorem 6. (7.1.3 Bousfield localization) For any homology theory E∗ and any spectrum X, the localization
LEX exists and is functorial in X.

Example 7. (Ravenel 1.9, 1.10) Note that direct limit does not necessarily preserve E∗-locality and LE does
not necessarily commute with inverse limit. See Ravenel’s paper for example using the Moore spectrum.

Example 8. (7.14) Let E∗ be the ordinary homology H∗ and X a finite spectrum satisfying K(n)∗(X) ∕= 0
with a vn-self map f . Define the telescope of the system

X̂ := lim
→

(X
f−→ Σ−dX

f−→ Σ−2dX
f−→ · · · ).

We know LHX̂ is contractible since H∗(f) = 0 and therefore H∗(X̂) = 0. On the other hand, we know X̂ is
not contractable because

K(n)∗(X̂) ∼= K(n)∗(X) ∕= 0

by properties of vn-self map.

Proposition 9. (7.1.5 Ring spectra) If E is a ring spectrum, then any E-module spectrum M (e.g. the
spectrum E ∧X for any X) is E∗-local. Generally, if M is a E-module spectrum, then M is E∗-local.



Proof. By definition, we need to show that for any spectrum W with E∗(W ) = 0,

[W,E ∧X] = 0.

Let µ : E × E → E denote the multiplication map. Given any map f : W → E ∧X, we have a diagram

W
f !!

η∧W

""

E ∧X

η∧X

""

E∧X

##◆◆
◆◆◆

◆◆◆
◆◆◆

E ∧W
E∧f !! E ∧ E ∧X

µ∧X !! E ∧X.

Since E ∧W is contractable, then f is null.

Note that this does not imply that E ∧X = LEX even though E ∧X is E∗-local.

Definition 10. (7.1.6 E∗-nilpotence) For a ring spectrum E, the class of E-nilpotent spectra is the smallest
class satisfying the following conditions:

1. E is E-nilpotent.

2. If N is E-nilpotent, so is N ∧X for any spectrum X.

3. The cofiber of any map between E-nilpotent spectra is E-nilpotent.

4. Any retract of an E-nilpotent spectrum is E-nilpotent.

Proposition 11. (7.1.7 E∗-ilpotence and E∗-locality) Every E∗ nilpotent spectrum is E∗-local.

2 Bousfield localization

Definition 12. (7.2.1 Bousfield equivalent) For a spectrum E, < E > denotes the equivalence class of E
under the following equivalence relation: E ∼ F if E∗X = 0 iff F∗X = 0 for any spectrum X (i. e. E ∧X is
contractable if and only if F ∧X is contractable ). Equivalently, E ∼ F if a map is an E∗- equivalence iff it
is a F∗-equivalence. We will refer to < E > as the Bousfield class of E.

Definition 13. (complement) < F >≥< E > if each F∗-acyclic spectrum is E∗-acyclic. < E >>< F > if
< E >≥< F > and < E > ∕=< F >. A class < E > has a complement < E >c if < E > ∧ < E >c=< pt >
and < E > ∨ < E >c=< S0 >.

Proposition 14. (Properties)

1. < E ∨ F >=< E > ∨ < F >

2. < E ∧ F >=< E > ∧ < F >

3. (< X > ∨ < Y >)∧ < Z >= (< X > ∨ < Z >) ∧ (< Y > ∨ < Z >)

4. (< X > ∧ < Y >)∨ < Z >= (< X > ∧ < Z >) ∨ (< Y > ∧ < Z >)

Proposition 15. (Simple examples)

1. < S0 >≥< E >≥< pt > for any spectrum E

2. < S0 > ∧ < E >=< E >

3. < S0 > ∨ < E >=< S0 >

4. < pt > ∧ < E >=< pt >

5. < pt > ∨ < E >=< E >



Proposition 16. (7.2.2) The localization functors LE and LF are the same if and only if < E >=< F >. If
< E >≤< F >, then LELF = LE and there is a natural transformation LF → LE.

Let S0
Q denote the rational sphere spectrum (the initial spectrum whose homotopy groups are vector spaces

over Q and f : S0 → S0
Q induces equivalence on rational homotopy groups). Let S0

(p) denote the p-local sphere

spectrum and S0/(p) denote the mod p Moore spectrum (cofiber of S0 p−→ S0) We have the following result.

Proposition 17. (7.2.5)

< S0
(p) > =< S0

Q > ∨ < S0/(p) >

< pt > =< S0
Q > ∧ < S0/(p) >

< pt > =< S0/(q) > ∧ < S0/(p) >, p ∕= q

< S0 > =< S0
Q > ∨

!

p

< S0/(p) >

Definition 18. (Smashing) A spectrum E is called smashing if

< E >=< LES
0 > .

Proposition 19. (Smashing) If E is smashing, then

1. X
1∧η−−→ X ∧ LES

0 is an E∗-localization.

2. Every direct limit of E∗-local spectra is E∗-local.

3. LE commutes with direct limits.

Proposition 20. If

X → X
f−→ Y → ΣW

is a cofiber sequence, then
< W >≤< X > ∨ < Y >

with equality holds when f is smash nilpotent. For a self map (not necessarily vn) f , let Cf denote its cofiber

and X̂ denote the telescope obtained by iterating f . Then we have

< X >=< X̂ > ∨ < Cf >

< X̂ > ∧ < Cf >=< pt > .

Theorem 21. (7.2.7 Class invariance) Let X and Y be p-local finite CW-complexes of types m,n. Then
< X >=< Y > if and only if m = n, and < X ><< Y > if and only if m > n.

Proof. We can form CX and CY , the smallest thick subcategory of FH(p) containingX and Y . Since everything
in a thick subcategory is built up from X using cofibration and retraction, for any X ′ ∈ CX we have

< X ′ ><< X >

using the last proposition. We can then show that CX ∈ Fm and CX /∈ Fm+1 because X is of type m, which
means CX = Fm and CY = Fn. When m = n, then CX = CY so < X >=< Y >.

3 MU

Definition 22. (MU,BP,E(n),K(n), H/(p)) Recall that

< MU >=
!

p

< MU(p) >=
!

p

< BP >

is a wedge sum of BP with various primes p.



Theorem 23. (7.4.1 Brown-Comenetz dual) Let Y be a spectrum with finite homotopy groups. Then there is
a spectrum cY , called the Brown Comenetz dual of Y such that ccY = Y and for any spectrum X,

[X, cY ]−i = Hom(πi(X ∧ Y ),R/Z).

In particular, we have
π−i(Y ) = Hom(πi(Y ),R/Z)

and cH/(p) = H/(p).

It follows that if [X, cY ]∗ = 0, then we X ∧ Y is contractable. Similarly, if [X,Y ]∗ = 0, then X ∧ cY
is contractable. Let X be MU and Y be a finite spectrum with trivial rational homology, using the Adams
spectral sequence one can show that [X,Y ]∗ = 0 so MU∗(cY ) = 0. Therefore, there exists a non-contractable
spectrum with MU∗(cY ) = 0, so we know that < MU ><< S0 >. Moreover, we have the following result.

Theorem 24. (7.4.2 < MU ><< S0 >) There is a spectrum X(n) for 1 ≤ n ≤ ∞ with X(1) = S0 and
X(∞) = MU such that < X(n) >≥< X(n+ 1) > for each n with

< X(pk − 1)(p) >>< X(pk)(p) >

for each prime p and each k ≥ 0.

The Bott periodicity gives us a homotopy equivalence ΩSU → BU and by composing this map with the
inclusion of SU(n) into SU we get

ΩSU(n) → BU

whose associate Thom spectrum is X(n). We have

H∗X(n) = Z[b1, ..., bn−1]

where |bi| = 2i and the generators map to generators of the same name of H∗MU .

4 E(n)-Localization

Definition 25. (7.5.1) We write LnX for LE(n)X and let CnX be the fiber of the localization X → LEnX.

Theorem 26. (7.5.2 Localization theorem) For any spectrum Y , we have

BP ∧ LnY = Y ∧ LnBP.

Moreover, if v−1
n−1BP∗(Y ) = 0, we have BP ∧ LnY = Y ∧ v−1

n BP , i. e. BP∗(LnY ) = v−1
n BP∗(Y ).

Definition 27. (7.5.3 Chromatic tower) The chromatic tower for a p-local spectrum X is the inverse system

L0X ← L1X ← L2X ← ...

We know for a fact that

< E(n) >=

n!

i=0

< K(i) >

so
< E(n) >=< E(n− 1) > ∨ < K(n) >≤< E(n− 1) >

and so we have
Ln−1 → Ln

Conjecture 28. (7.5.5 Telescope) Let X be a p-local finite CW-complex of type n with a vn map f . Let X̂ be
the telescope, and we know K(n)∗f is an isomorphism and K(i)∗f = 0 for i < n. Therefore, we know E(n)∗f
is an equivalence so X → LnX factors through the telescope X̂, so we have a map

λ : X̂ → LnX.

Moreover, we get
BP∗(LnX) = v−1

n BP∗(X)

and λ is a BP -equivalence by the localization theorem.


