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1 Localization

Definition 1. (7.1.1 E,-acyclic, E,-equivalence, F,-local) A spectrum X is F.-acyclic if E,X = 0. A map
f: X =Y is an E,-equivalence if it induces an isomorphism in E,-homology. A spectrum Y is F,-local if for
each F.-acyclic spectrum X, we have [X,Y] = 0.

Definition 2. (7.1.1 E,-localization) An E,-localization functor Lg is a covariant functor that takes a spec-
trum X to a F,-local spectrum LgX along with a natural transformation 7 : ids — Lg such that

1. nx : X = LgX is an E,-equivalence.

2. For any F,-equivalence f : X — Y thereis g : Y — LgX such that gf = nx. In other words, nx is the
terminal F,-equivalence from X.

Proposition 3. (7.1.2 Properties of E.-locality)

1. Any inverse limit preserves E,-locality.

2. In a cofiber sequence W — X — Y, if any two are E,-local, so is the third.

3. Wedge summands preserve E,-locality, i. e. if X VY 1is E.-local, so are X orY.
Proposition 4. (Properties of Lg)

1. Lg is unique.

2. Lg is idempotent, i. e. LpLg = Lg

3. Any f : X — Y whereY is E-local factors through L X . In other words, Lg X is the initial object that
is Ey-local and mapped to from X.

Proposition 5. Let E, and F, be generalized homology theories such that E.X = 0 implies F,. X = 0. Then
if a spectrum Y is Fy-local, it is E.-local. In particular, if E,X = 0 iff F.X = 0, then the functors Lg and
Lr are the same.

Theorem 6. (7.1.3 Bousfield localization) For any homology theory E. and any spectrum X, the localization
LgX exists and is functorial in X .

Example 7. (Ravenel 1.9, 1.10) Note that direct limit does not necessarily preserve E,-locality and L does
not necessarily commute with inverse limit. See Ravenel’s paper for example using the Moore spectrum.

Example 8. (7.14) Let E, be the ordinary homology H, and X a finite spectrum satisfying K(n).(X) # 0
with a v,-self map f. Define the telescope of the system

X =lim(X L y-ix Lx-2x L, ..
—

We know Ly X is contractible since H,(f) = 0 and therefore H,(X) = 0. On the other hand, we know X is
not contractable because .
K(n).(%) = K(n).(X) £0

by properties of v,-self map.

Proposition 9. (7.1.5 Ring spectra) If E is a ring spectrum, then any E-module spectrum M (e.g. the
spectrum E AN X for any X ) is Ey-local. Generally, if M is a E-module spectrum, then M is E.-local.



Proof. By definition, we need to show that for any spectrum W with E.(W) = 0,
W,EAX]=0.
Let u: F x E — E denote the multiplication map. Given any map f: W — E A X, we have a diagram

w—' BAX

n/\Wi n/\xl £nx

EAW 2L paEAx XA EAX.

Since £ AW is contractable, then f is null. O
Note that this does not imply that £ A X = LgX even though E A X is E,-local.

Definition 10. (7.1.6 E.-nilpotence) For a ring spectrum E, the class of E-nilpotent spectra is the smallest
class satisfying the following conditions:

1. E is E-nilpotent.
2. If N is E-nilpotent, so is N A X for any spectrum X.

3. The cofiber of any map between E-nilpotent spectra is E-nilpotent.

=

. Any retract of an E-nilpotent spectrum is E-nilpotent.

Proposition 11. (7.1.7 E.-ilpotence and E.-locality) Every E. nilpotent spectrum is E-local.

2 Bousfield localization

Definition 12. (7.2.1 Bousfield equivalent) For a spectrum FE, < E > denotes the equivalence class of F
under the following equivalence relation: E ~ F if E,X = 0 iff F,. X = 0 for any spectrum X (i. e. EA X is
contractable if and only if F' A X is contractable ). Equivalently, E ~ F' if a map is an E,- equivalence iff it
is a Fi-equivalence. We will refer to < E > as the Bousfield class of F.

Definition 13. (complement) < F >>< E > if each Fi-acyclic spectrum is E,-acyclic. < E >>< F > if
<E>><F>and < FE >#< F >. A class < E > has a complement < F >“if < E> A< E >°=<pt >
and < E >V < E >°=< 50 >.

Proposition 14. (Properties)

1. <EVF>>=<E>V<F>

2. KENF>=<E>A<F>

3 (KX >VKYSIN<KZ>=(KX>V<Z>N(KY >V<<Z>)

4. (K X>AKY >IN Z>=(KX>A<Z>)VKY>A<Z>)
Proposition 15. (Simple examples)

1. < S">>< E >>< pt > for any spectrum E

2. <S">AN<E>=<E>

3. <8'>V<E>=<8>
4. <pt>AN<E>=<pt>
5

L L<pt>VLSE>=<FE >



Proposition 16. (7.2.2) The localization functors Ly and Lg are the same if and only if < E >=< F >. If
< E ><< F >, then LpLr = Lg and there is a natural transformation Lr — Lg.

Let S& denote the rational sphere spectrum (the initial spectrum whose homotopy groups are vector spaces
over Q and f: S° — S& induces equivalence on rational homotopy groups). Let S?p) denote the p-local sphere

spectrum and S°/(p) denote the mod p Moore spectrum (cofiber of S® £ S%) We have the following result.
Proposition 17. (7.2.5)
< Spy > =<5 >V <S5(p) >
<pt>=<54>N<5%(p) >
<pt>=<85%(q)>n<S/(p)>p#q

<8 >=<8y>v\/ <P >
P

Definition 18. (Smashing) A spectrum E is called smashing if
<E>=<LpS®>.

Proposition 19. (Smashing) If E is smashing, then

1. X ﬂ) X A LgS° is an E,-localization.

2. Every direct limit of Ex-local spectra is E,-local.
3. Lg commutes with direct limits.

Proposition 20. If
X->xLyossw

is a cofiber sequence, then
<W><<X>V<Y >

with equality holds when f is smash nilpotent. For a self map (not necessarily v,) f, let Cy denote its cofiber
and X denote the telescope obtained by iterating f. Then we have

<X>=<X>V<Cf>
<X>A<Cp>=<pt>.

Theorem 21. (7.2.7 Class invariance) Let X and Y be p-local finite CW-complezes of types m,n. Then
<X >=<Y >ifand only if m=n, and < X ><<Y > if and only if m > n.

Proof. We can form C'y and Cy, the smallest thick subcategory of F'H ,,) containing X and Y. Since everything
in a thick subcategory is built up from X using cofibration and retraction, for any X’ € C'x we have

<X ' ><< X >

using the last proposition. We can then show that Cx € F,, and Cx ¢ F,,+1 because X is of type m, which
means Cx = F,,, and Cy = F,,. When m = n, then Cx =Cy so < X >=<Y >. O

3 MU
Definition 22. (MU, BP, E(n), K(n), H/(p)) Recall that

< MU >=\/ < MUy >=\/ < BP >
p p

is a wedge sum of BP with various primes p.



Theorem 23. (7.4.1 Brown-Comenetz dual) Let Y be a spectrum with finite homotopy groups. Then there is
a spectrum cY , called the Brown Comenetz dual of Y such that ccY =Y and for any spectrum X,

[X,cY]_i = Hom(mi(X NY),R/Z).

In particular, we have
ﬂ',i(Y) = HO’I’I’L(ﬂ'l(Y),R/Z)
and cH/(p) = H/(p).

It follows that if [X,cY]. = 0, then we X AY is contractable. Similarly, if [X,Y]. = 0, then X A ¢Y
is contractable. Let X be MU and Y be a finite spectrum with trivial rational homology, using the Adams
spectral sequence one can show that [X,Y], = 0 so MU, (cY) = 0. Therefore, there exists a non-contractable
spectrum with MU, (cY) = 0, so we know that < MU ><< S° >. Moreover, we have the following result.

Theorem 24. (7.4.2 < MU ><< S° >) There is a spectrum X (n) for 1 < n < oo with X(1) = S° and
X (00) = MU such that < X(n) >>< X(n+ 1) > for each n with

< X' —1) ) >>< X)) >
for each prime p and each k > 0.

The Bott periodicity gives us a homotopy equivalence 2SU — BU and by composing this map with the
inclusion of SU(n) into SU we get
QSU(n) - BU

whose associate Thom spectrum is X (n). We have
H,X(n)=2ZDb1,...,bn_1]

where |b;| = 2¢ and the generators map to generators of the same name of H,MU.

4 F(n)-Localization

Definition 25. (7.5.1) We write L, X for L)X and let C,, X be the fiber of the localization X — Lp, X.
Theorem 26. (7.5.2 Localization theorem) For any spectrum Y, we have
BPAL,YY =Y AL, BP.

Moreover, if v, ' BP,(Y) = 0, we have BP A L,Y =Y Av,'BP, i. e. BP,(L,Y) = v, 'BP,(Y).
Definition 27. (7.5.3 Chromatic tower) The chromatic tower for a p-local spectrum X is the inverse system
LoX < L1 X < Lo X + ...

We know for a fact that
<E(n)>=\/ <K(i) >
SO
<EMn)>=<En-1)>V<K(Mn) ><<En-1)>

and so we have
Ln—l — Ln

Conjecture 28. (7.5.5 Telescope) Let X be a p-local finite CW-complex of type n with a v, map f. Let X be
the telescope, and we know K (n).f is an isomorphism and K (i).f = 0 for i <n. Therefore, we know E(n). f
is an equivalence so X — L, X factors through the telescope X, so we have a map

AN X > L,X.

Moreover, we get
BP,(L,X) = v, 'BP,(X)

and X\ is a BP-equivalence by the localization theorem.



