Bousfield localization Chromatic homotopy theory reading group Gabrielle Li, Spring 2023

1 Localization

Definition 1. (7.1.1 E_* -acyclic, E_* -equivalence, E_* -local) A spectrum X is E_* -acyclic if $E_*X = 0$. A map $f: X \to Y$ is an E_* -equivalence if it induces an isomorphism in E_* -homology. A spectrum Y is E_* -local if for each E_* -acyclic spectrum X, we have [X, Y] = 0.

Definition 2. (7.1.1 E_* -localization) An E_* -localization functor L_E is a covariant functor that takes a spectrum X to a E_* -local spectrum $L_E X$ along with a natural transformation $\eta : id_S \to L_E$ such that

- 1. $\eta_X : X \to L_E X$ is an E_* -equivalence.
- 2. For any E_* -equivalence $f: X \to Y$, there is $g: Y \to L_E X$ such that $gf = \eta_X$. In other words, η_X is the terminal E_* -equivalence from X.

Proposition 3. (7.1.2 Properties of E_* -locality)

- 1. Any inverse limit preserves E_* -locality.
- 2. In a cofiber sequence $W \to X \to Y$, if any two are E_* -local, so is the third.
- 3. Wedge summands preserve E_* -locality, i. e. if $X \vee Y$ is E_* -local, so are X or Y.

Proposition 4. (Properties of L_E)

- 1. L_E is unique.
- 2. L_E is idempotent, i. e. $L_E L_E = L_E$
- 3. Any $f: X \to Y$ where Y is E_* -local factors through $L_E X$. In other words, $L_E X$ is the initial object that is E_* -local and mapped to from X.

Proposition 5. Let E_* and F_* be generalized homology theories such that $E_*X = 0$ implies $F_*X = 0$. Then if a spectrum Y is F_* -local, it is E_* -local. In particular, if $E_*X = 0$ iff $F_*X = 0$, then the functors L_E and L_F are the same.

Theorem 6. (7.1.3 Bousfield localization) For any homology theory E_* and any spectrum X, the localization $L_E X$ exists and is functorial in X.

Example 7. (Ravenel 1.9, 1.10) Note that direct limit does not necessarily preserve E_* -locality and L_E does not necessarily commute with inverse limit. See Ravenel's paper for example using the Moore spectrum.

Example 8. (7.14) Let E_* be the ordinary homology H_* and X a finite spectrum satisfying $K(n)_*(X) \neq 0$ with a v_n -self map f. Define the telescope of the system

$$\hat{X} := \lim_{\to} (X \xrightarrow{f} \Sigma^{-d} X \xrightarrow{f} \Sigma^{-2d} X \xrightarrow{f} \cdots).$$

We know $L_H \hat{X}$ is contractible since $H_*(f) = 0$ and therefore $H_*(\hat{X}) = 0$. On the other hand, we know \hat{X} is not contractable because

$$K(n)_*(X) \cong K(n)_*(X) \neq 0$$

by properties of v_n -self map.

Proposition 9. (7.1.5 Ring spectra) If E is a ring spectrum, then any E-module spectrum M (e.g. the spectrum $E \wedge X$ for any X) is E_* -local. Generally, if M is a E-module spectrum, then M is E_* -local.

Proof. By definition, we need to show that for any spectrum W with $E_*(W) = 0$,

$$[W, E \wedge X] = 0.$$

Let $\mu: E \times E \to E$ denote the multiplication map. Given any map $f: W \to E \wedge X$, we have a diagram

$$W \xrightarrow{f} E \land X$$

$$\eta \land W \downarrow \qquad \eta \land X \downarrow \qquad E \land X$$

$$E \land W \xrightarrow{E \land f} E \land E \land X \xrightarrow{\mu \land X} E \land X.$$

Since $E \wedge W$ is contractable, then f is null.

Note that this does not imply that $E \wedge X = L_E X$ even though $E \wedge X$ is E_* -local.

Definition 10. (7.1.6 E_* -nilpotence) For a ring spectrum E, the class of E-nilpotent spectra is the smallest class satisfying the following conditions:

- 1. E is E-nilpotent.
- 2. If N is E-nilpotent, so is $N \wedge X$ for any spectrum X.
- 3. The cofiber of any map between *E*-nilpotent spectra is *E*-nilpotent.
- 4. Any retract of an *E*-nilpotent spectrum is *E*-nilpotent.

Proposition 11. (7.1.7 E_* -ilpotence and E_* -locality) Every E_* nilpotent spectrum is E_* -local.

2 Bousfield localization

Definition 12. (7.2.1 Bousfield equivalent) For a spectrum $E, \langle E \rangle$ denotes the equivalence class of E under the following equivalence relation: $E \sim F$ if $E_*X = 0$ iff $F_*X = 0$ for any spectrum X (i. e. $E \wedge X$ is contractable if and only if $F \wedge X$ is contractable). Equivalently, $E \sim F$ if a map is an E_* - equivalence iff it is a F_* -equivalence. We will refer to $\langle E \rangle$ as the Bousfield class of E.

Definition 13. (complement) $\langle F \rangle \geq \langle E \rangle$ if each F_* -acyclic spectrum is E_* -acyclic. $\langle E \rangle \geq \langle F \rangle$ if $\langle E \rangle \geq \langle F \rangle$ and $\langle E \rangle \neq \langle F \rangle$. A class $\langle E \rangle$ has a complement $\langle E \rangle^c$ if $\langle E \rangle \wedge \langle E \rangle^c = \langle pt \rangle$ and $\langle E \rangle \vee \langle E \rangle^c = \langle S^0 \rangle$.

Proposition 14. (Properties)

- 1. $\langle E \lor F \rangle = \langle E \rangle \lor \langle F \rangle$
- $2. < E \land F > = < E > \land < F >$
- 3. $(< X > \lor < Y >) \land < Z >= (< X > \lor < Z >) \land (< Y > \lor < Z >)$
- 4. $(< X > \land < Y >) \lor < Z >= (< X > \land < Z >) \lor (< Y > \land < Z >)$

Proposition 15. (Simple examples)

- 1. $\langle S^0 \rangle \geq \langle E \rangle \geq \langle pt \rangle$ for any spectrum E
- 2. $< S^0 > \land < E > = < E >$
- $3. < S^0 > \lor < E > = < S^0 >$
- 4. $< pt > \land < E > = < pt >$
- 5. $< pt > \lor < E > = < E >$

Proposition 16. (7.2.2) The localization functors L_E and L_F are the same if and only if $\langle E \rangle = \langle F \rangle$. If $\langle E \rangle \leq \langle F \rangle$, then $L_E L_F = L_E$ and there is a natural transformation $L_F \to L_E$.

Let $S^0_{\mathbf{Q}}$ denote the rational sphere spectrum (the initial spectrum whose homotopy groups are vector spaces over \mathbb{Q} and $f: S^0 \to S^0_{\mathbf{Q}}$ induces equivalence on rational homotopy groups). Let $S^0_{(p)}$ denote the *p*-local sphere spectrum and $S^0/(p)$ denote the mod *p* Moore spectrum (cofiber of $S^0 \xrightarrow{p} S^0$) We have the following result. **Proposition 17.** (7.2.5)

$$\begin{split} < S^{0}_{(p)} > = < S^{0}_{\mathbf{Q}} > \lor < S^{0}/(p) > \\ < pt > = < S^{0}_{\mathbf{Q}} > \land < S^{0}/(p) > \\ < pt > = < S^{0}/(q) > \land < S^{0}/(p) >, p \neq q \\ < S^{0} > = < S^{0}_{\mathbf{Q}} > \lor \bigvee_{p} < S^{0}/(p) > \end{split}$$

Definition 18. (Smashing) A spectrum *E* is called smashing if

 $\langle E \rangle = \langle L_E S^0 \rangle.$

Proposition 19. (Smashing) If E is smashing, then

- 1. $X \xrightarrow{1 \wedge \eta} X \wedge L_E S^0$ is an E_* -localization.
- 2. Every direct limit of E_* -local spectra is E_* -local.
- 3. L_E commutes with direct limits.

Proposition 20. If

$$X \to X \xrightarrow{f} Y \to \Sigma W$$

is a cofiber sequence, then

$$< W > \leq < X > \lor < Y >$$

with equality holds when f is smash nilpotent. For a self map (not necessarily v_n) f, let C_f denote its cofiber and \hat{X} denote the telescope obtained by iterating f. Then we have

$$< X > = < \hat{X} > \lor < C_f >$$
$$< \hat{X} > \land < C_f > = < pt > .$$

Theorem 21. (7.2.7 Class invariance) Let X and Y be p-local finite CW-complexes of types m, n. Then $\langle X \rangle = \langle Y \rangle$ if and only if m = n, and $\langle X \rangle < \langle Y \rangle$ if and only if m > n.

Proof. We can form C_X and C_Y , the smallest thick subcategory of $FH_{(p)}$ containing X and Y. Since everything in a thick subcategory is built up from X using cofibration and retraction, for any $X' \in C_X$ we have

$$\langle X' \rangle \langle X \rangle$$

using the last proposition. We can then show that $C_X \in F_m$ and $C_X \notin F_{m+1}$ because X is of type m, which means $C_X = F_m$ and $C_Y = F_n$. When m = n, then $C_X = C_Y$ so $\langle X \rangle = \langle Y \rangle$.

3 MU

Definition 22. (MU, BP, E(n), K(n), H/(p)) Recall that

$$\langle MU \rangle = \bigvee_{p} \langle MU_{(p)} \rangle = \bigvee_{p} \langle BP \rangle$$

is a wedge sum of BP with various primes p.

Theorem 23. (7.4.1 Brown-Comenetz dual) Let Y be a spectrum with finite homotopy groups. Then there is a spectrum cY, called the Brown Comenetz dual of Y such that ccY = Y and for any spectrum X,

$$[X, cY]_{-i} = Hom(\pi_i(X \wedge Y), \mathbb{R}/\mathbb{Z})$$

In particular, we have

$$\pi_{-i}(Y) = Hom(\pi_i(Y), \mathbb{R}/\mathbb{Z})$$

and cH/(p) = H/(p).

It follows that if $[X, cY]_* = 0$, then we $X \wedge Y$ is contractable. Similarly, if $[X, Y]_* = 0$, then $X \wedge cY$ is contractable. Let X be MU and Y be a finite spectrum with trivial rational homology, using the Adams spectral sequence one can show that $[X, Y]_* = 0$ so $MU_*(cY) = 0$. Therefore, there exists a non-contractable spectrum with $MU_*(cY) = 0$, so we know that $\langle MU \rangle \langle \langle S^0 \rangle$. Moreover, we have the following result.

Theorem 24. (7.4.2 < MU ><< S^0 >) There is a spectrum X(n) for $1 \le n \le \infty$ with $X(1) = S^0$ and $X(\infty) = MU$ such that $\langle X(n) \rangle \ge \langle X(n+1) \rangle$ for each n with

$$< X(p^{k} - 1)_{(p)} >> < X(p^{k})_{(p)} >$$

for each prime p and each $k \ge 0$.

The Bott periodicity gives us a homotopy equivalence $\Omega SU \to BU$ and by composing this map with the inclusion of SU(n) into SU we get

$$\Omega SU(n) \to BU$$

whose associate Thom spectrum is X(n). We have

$$H_*X(n) = \mathbb{Z}[b_1, ..., b_{n-1}]$$

where $|b_i| = 2i$ and the generators map to generators of the same name of H_*MU .

4 E(n)-Localization

Definition 25. (7.5.1) We write $L_n X$ for $L_{E(n)} X$ and let $C_n X$ be the fiber of the localization $X \to L_{E_n} X$. **Theorem 26.** (7.5.2 Localization theorem) For any spectrum Y, we have

$$BP \wedge L_n Y = Y \wedge L_n BP$$

Moreover, if $v_{n-1}^{-1}BP_*(Y) = 0$, we have $BP \wedge L_n Y = Y \wedge v_n^{-1}BP$, i. e. $BP_*(L_n Y) = v_n^{-1}BP_*(Y)$.

Definition 27. (7.5.3 Chromatic tower) The chromatic tower for a p-local spectrum X is the inverse system

$$L_0X \leftarrow L_1X \leftarrow L_2X \leftarrow \dots$$

We know for a fact that

$$< E(n) > = \bigvee_{i=0}^{n} < K(i) >$$

 \mathbf{SO}

$$< E(n) > = < E(n-1) > \lor < K(n) > \le < E(n-1) >$$

and so we have

$$L_{n-1} \to L_n$$

Conjecture 28. (7.5.5 Telescope) Let X be a p-local finite CW-complex of type n with a v_n map f. Let \hat{X} be the telescope, and we know $K(n)_*f$ is an isomorphism and $K(i)_*f = 0$ for i < n. Therefore, we know $E(n)_*f$ is an equivalence so $X \to L_n X$ factors through the telescope \hat{X} , so we have a map

$$\lambda: X \to L_n X$$

Moreover, we get

$$BP_*(L_nX) = v_n^{-1}BP_*(X)$$

and λ is a BP-equivalence by the localization theorem.