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1 Introduction

Today we will prove the Periodicity Theorem:

Theorem 1. For X and Y p-local finite CW-Complexes of type n, n finite, (i.e. n
is the smallest number such that K(n)∗(X) is nontrivial) the following are true:

1. There is a self map f : Σd+iX → ΣiX such that K(n)∗(f) is an isomorphism

and K(m)∗(f) is trivial for m ̸= n. This is a vn map.
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2. For h : X → Y (assuming the spectra have been suspended enough to be the
target of a vn map) if f : ΣdX → X and g : ΣeY → Y are vn maps then there
exists i, j so that di = ej and

ΣdiX ΣejY

X Y

Σdih

f i gj

h

(1)

commutes up to homotopy.

Before we dive into the proof, we give some motivation for why we would want
such a theorem to be true. In our understanding, the Periodicity Theorem is useful in
the inductive construction of type n Spectra. This is an explication of what appears
in lecture 27 of [1].

To begin, we note that finding type 0 and type 1 spectra is not a difficult task.
Since K(0) is just rational homology, S the sphere spectrum is a type 0 spectra. Sim-
ilarly, since K(1)∗(S) ∼= π∗(K(1)) ∼= Fp[v1, v

−1
1 ] we can construct a type 1 spectrum

by taking the cofiber of S
p−→ S ↠ X. Since this is a cofiber sequence applying K(1)

gives K(1)∗(S)
·p−→ K(1)∗(S) → K(1)∗(X) → .... But since K(1)∗(S) is p torsion,

the kernel of the map K(1)∗(S) → K(1)∗(X) is 0, so K(1)∗(X) must be nontrivial.

K(0)∗(X) is trivial since multiplication by p is a rational isomorphism. Thus X is a
type 1 spectrum.

If we have X as a type n spectrum, then, we would hope to mimic the above
construction in some way: starting with a self map f : ΣdX → X, we would like for

the cofiber ΣdX
f−→ X → Cf to be a type n+ 1 spectrum.

Applying Morava K-theory to the sequences above gives

K(n)∗(Σ
dX)

K(n)∗(f)−−−−−→ K(n)∗(X) → K(n)∗(Cf ) → ... (2)

And so K(n)∗(Cf ) is trivial if and only if K(n)∗(f) is an isomorphism.
Similarly,

K(n+ 1)∗(Σ
dX)

K(n+1)∗(f)−−−−−−−→ K(n+ 1)∗(X) → K(n+ 1)∗(Cf ) → ... (3)

would show that K(n+ 1)∗(Cf ) is nontrivial if K(n+ 1)(f) is trivial.
Therefore, the Periodicity Theorem is a very useful tool in building a sequence

of spectra, all of increasing types, inductively.
I am not aware of other motivations of the theorem, but if anyone knows of any

let me know and I’ll add it to this document!

2



2 Preliminaries

Before we begin the proof, we start with a few preliminary notes.

2.1 Review of Relevant Previous Material

Firstly, we recall the notion of thick subcategories.

Definition 1. Thick Subcategory. A thick subcategory of FH is a subcategory C ⊆
FH that is closed under cofibers and smash products. I.e. if X

f−→ Y → Cf is a cofiber
sequence, then it has two out of three w.r.t. membership in C and if X ∨Y ∈ C then
X, Y ∈ C.

Importantly, we have the following result:

Theorem 2. Thick Subcategory Theorem. If F is a thick subcategory of FH(p) then
either it is the trivial subcategory, the entire category, or it is the subcategory of all
p-local spectra Fp,n+1 such that v−1

n−1MU(X) = 0 or, equivalently, that Kn−1(X) = 0.

We will also be using the notion of Spanier-Whitehead duality, which we describe
below

Theorem 3. For X a p-local, finite CW-spectrum, there is a unique spectrum DX
of the same type, satisfying the following properties.

1. [X, Y ] ∼= π∗(DX ∨ Y ) where the image of the identity map i : X → X is the
unit map e : S → DX ∨X.

2. DDX ∼= X.

3. D(X ∨ Y ) ∼= DX ∨DY .

3 The Periodicity Theorem

Let Vn denote the subcategory of p-local finite spectra admitting a vn map as in the
theorem. The periodicity theorem is the assertion that Vn = Fp,n, so thus we begin
by demonstrating some inclusions.

Firstly, Fp,n+1 ⊆ Vn since if X ∈ Fp,n+1 then K(n)(X) = 0 so the trivial map is vn
map. Then, V ⊆ Fp,n since, by contrapositive, if X ̸∈ Fp,n then K(n− 1)(X) ̸= 0 so
v−1
n−1MU(X) ̸= 0. We can then use the algebraic machinery from chapter 3, namely
3.3.11 to demonstrate the non-existence of a vn map.
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Thus we have shown that Fp,n+1 ⊆ Vn ⊆ Fp,n. The proof of the periodicity
theorem will then proceed along the following lines

1. Demonstrate that Vn is a thick subcategory, so that either Vn = Fp,n or Vn =
Fp,n+1.

2. Produce a type n spectrum and a vn map on that spectrum, demonstrating
that Vn = Fp,n.

3.1 Vn is a Thick Subcategory

Theorem 4. Vn is a thick subcategory. I.e. if X ∨Y carries a vn map, then X does;

and if two out of the three spaces in X
f−→ Y ↠ Cf carry a vn map, then the third

does.

Proof. First, assume we have a vn map Σd(X ∨Y )
f−→ X ∨Y . By Spanier-Whitehead

duality, this is adjoint to a map f̂ : Sd → D(X ∨ Y ) ∨ (X ∨ Y ) = R. We use the
idempotent X ∨ Y → X → X ∨ Y to transfer information down to X a manner
dependent on the following lemma:

Lemma 1. If f̂ is as before, then some iterate f̂k for k > 0 is in the center of π∗(R).

Thus, we replace f with the right iterate so that f commutes with the idempotent
above. Therefore the following composition

ΣdX → Σd(X ∨ Y )
f−→ X ∨ Y → X (4)

is a vn map, let’s call it f ′. That K(m)∗(f
′) = 0 for m ̸= n is obvious, since f

itself is a vn map. It then remains to show that K(n)∗(f
′) is an isomorphism. But

since K(n)∗(f) is an isomorphism, we can construct it’s inverse to get

K(n)∗(Σ
dX) K(n)∗(Σ

d(X ∨ Y )) K(n)∗(X ∨ Y ) K(n)∗(X)

K(n)∗(X ∨ Y ) K(n)∗(Σ
d(X ∨ Y )) K(n)∗(Σ

dX)

K(n)∗(f)

K(n)∗(f)
−1

(5)
but we can switch the order of K(n)∗(f) and the idempotent, as they already

commute up to homotopy to get
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K(n)∗(Σ
dX) K(n)∗(Σ

d(X ∨ Y )) K(n)∗(Σ
dX)

K(n)∗(Σ
d(X ∨ Y )) K(n)∗(X ∨ Y ) K(n)∗(Σ

d(X ∨ Y ))

K(n)∗(Σ
dX)

K(n)∗(f) K(n)∗(f)
−1

(6)

Which just ends up being

K(n)∗(Σ
dX) K(n)∗(Σ

d(X ∨ Y )) K(n)∗(Σ
dX)

K(n)∗(Σ
d(X ∨ Y )) K(n)∗(Σ

dX)

(7)

which is clearly just the identity. Thus K(n)∗(f
′) has an inverse and is thus an

isomorphism. Therefore X carries a vn map, so X ∈ Vn.

Now if we have a cofiber sequence X
h−→ Y ↠ Ch with X having a vn map f and

Y having a vn map g, it would be nice if we were able to get a corresponding ’cofiber
sequence’ like the following

ΣdX ΣdY ΣdCh

X Y Ch

Σdh

f g

h

(8)

while unfortunately a diagram like 8 does not generally hold, the following lemma
provides the best approximation

Lemma 2. With X and Y as above, there exists integers i, j such that for any
h : X → Y the following diagram commutes:

ΣdiX ΣejY

X Y

Σdih

f i gj

h

(9)

where di = ej.
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thus, we can assume we’ve iterated f and g enough so that hf ∼= gh and thus
we do get a diagram exactly like Equation 8. We can then apply the five lemma to
demonstrate that the map l : ΣdCh → Ch induces an isomorphism on K(n)∗.

However, this does not immediately demonstrate that K(m)∗(l) = 0, and in fact

it will not in general. However, we can demonstrate that K(m)∗(l
2) = 0 via the

following diagram:

. . . K(m)∗(Σ
2dY ) K(m)∗(Σ

2dCh) K(m)∗(Σ
2d+1(X)) . . .

. . . K(m)∗(Σ
dY ) K(m)∗(Σ

dCh) K(m)∗(Σ
dX) . . .

. . . K(m)∗(Y ) K(m)∗(Ch) K(m)∗(ΣX) . . .

K(m)∗(g)=0 K(m)∗(l)

K(m)∗(d)

K(m)∗(f)=0

K(m)∗(g)=0

K(m)∗(p)

K(m)∗(l)

K(m)∗(d)

K(m)∗(p)

(10)
For an element x ∈ K(m)∗(Σ

2dCh) since K(m)∗(f ◦ d) = 0, we know that

K(m)∗(l)(x) ∈ ker(K(m)∗(d)). Since the rows are exact, we then know that ∃x′ ∈
K(m)∗(Σ

dY ) such that K(m)∗(l)(x) = K(m)∗(p)(x
′). Therefore K(m)∗(l

2)(x) =

K(m)∗(l ◦ p)(x′) = K(m)∗(p ◦ g)(x′) = 0 so K(m)∗(l
2) = 0.

Therefore we have produced a vn map l2 on Ch, and thus have demonstrated that
Vn is a thick subcategory.

However this proof does depend on Lemmas 1 and 2. For a proof of Lemma 1,
read the final part of section 6.1 of [2]; it’s proof is not terribly illuminating. The
proof of Lemma 2 is interesting, though, and we will discuss it here.

3.1.1 Proof of Lemma 2

Ravenel begins with a different lemma,

Lemma 3. If X has two vn maps f, g then there are integers i, j so that f i ∼= gj.

Proof. By Ravenel’s Lemma 6.1.1, we can replace f, g with powers so that their effect
after applying K(m)∗ is the same and by applying Lemma 1 we may also assume

that they commute. Thus K(m)∗(f − g) = 0 for all m, which, by the Nilpotence

Theorem, implies that (f − g) is a nilpotent map. This ∃i so that (f − g)p
i
= 0.
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As f and g commute, we may expand this mod p to get that fpi = gp
i
mod p, and

furthermore that fpi+k
= gp

i+k
mod pk. We then take k to be sufficiently large so

that it implies that fpI = gp
I
on the nose, i.e. that f ∼= g.

We can then use this lemma to prove Lemma 2.

Proof of Lemma 2. Let W = DX ∨ Y so that h : X → Y is adjoint to ĥ ∈ π∗(W ).
W carries two vn maps, namely Df ∨ Y and DX ∨ g which, by the above lemma,
are homotopic up to a power; i.e. Df i ∨ Y ∼= DX ∨ gj. We then note that W is a
module spectrum over DX ∨X (with structure map (DX ∨X) ∨W = DX ∨X ∨
DX ∨ Y

DX∨h∨DX∨Y−−−−−−−−→ (DX ∨ Y )∨ (DX ∨ Y )
m−→ DX ∨ Y = W ). Then we have that

hf i ⊣ f̂ iĥ = (Df i ∨ Y )ĥ ∼= (DX ∨ gj)ĥ = ĝjĥ ⊢ gjh so hf i ∼= gjh.

3.2 Construction of a Type n Spectrum with a vn Map

The plan for this section is to develop some machinery behind Margolis Homology
Groups and use the Adams Spectral Sequence to use properties of those homology
groups to guarantee that a given spectrum has a vn map. Such spectra are called
strongly type n. This pushes the goalpost further down, as we now need to construct
a strongly type n spectrum. This will involve the Smith Construction which, unfor-
tunately, only produces a weakly type n spectrum. That one can convert a weakly
type n spectrum into a strongly type n spectrum will not be discussed, but is in the
appendices of Ravenel’s book (specifically appendix C of [2]).

3.2.1 Margolis Homology Groups and Strongly Type n Spectra

We first recall the structure of the Steenrod Algebra of cohomology operations, as
well as the dual algebra of co-operations. For the prime 2 the Dual Steenrod Algebra
A∗ is Z/2[ξ1, ξ2, ...], and for odd primes it is Z/2[ξ1, ...]⊗E(τ0, τ1, . . .) with |ξi| = 2i−1
for p = 2 and 2pi − 2 for p ̸= 2 and |τi| = 2pi − 1. We let P s

t denote the dual of ξp
s

t

w.r.t the monomial basis of A∗ and Qi be dual to τi.
These elements, as they belong to A can act on any A-moduleM , thus allowing us

to define the Margolis Homology groupsH∗(M ;P s
t ), H∗(M ;Qi) in a manner described

in Ravenel ([2]Definition 6.2.1). The details are not important, as the intricacies are
handled in a result to which we appeal.

Importantly, though, spectra whose Margolis Homology Groups satisfy certain
conditions are the strongly type n spectra which we define below

Definition 2. Strongly Type n Spectrum. A p-local finite CW-complex Y is strongly
of type n if
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• For p = 2 H∗(Y ;P s
t ) := H∗(H

∗(Y );P s
t ) vanishes for s+ t ≤ n+ 1 and (s, t) ̸=

(0, n + 1). For p > 2, we require that H∗(Y ;P s
t ) vanish for s + t ≤ n and

H∗(Y ;Qi) vanishes for i < n.

• Qn acts trivially on H∗(Y )

• H∗(Y ) and K(n)∗(Y ) have the same rank.

Spectra satisfying these conditions are what we need to provide the periodicity
theorem as:

Theorem 5. If Y is strongly type n then it carries a vn map.

3.2.2 Proof of Theorem 5

For a vn map f : ΣdY → Y , we have that its Spanier-Whitehead adjoint is f̂ ∈
πd(R), R = DY ∨ DY . Thus to demonstrate the existence of a vn map, we study
π∗(R) - a task very suitable for the Adams Spectral Sequence.

In this case, the E2 term of the AdSS is of the form Es,t
2 = Exts,tA (H∗(R),Z/p)

and the differentials have the signature dr : E
s,t
r → Es+r,t+r−1

r+1 . The result to which
we appeal is the following:

Lemma 4. If a spectrum Y is strongly type n then for R = DY ∨ Y the E2 Ext

terms of the Adams Spectral Sequence vanishes above a line of slope
1

|vn|
. I.e. the

group Exts,tA (H∗(R),Z/p) vanishes for s > c+
1

2pn − 2
(t− s).

Implicitly we are visualizing the AdSS as a spectral sequence with x coordinate
(t− s) representing the topological dimension and y coordinate s. While this result
helps us understand a large region of the Adams spectral sequence, the following
result will help us to understand a different part in preparation for further results.
It relies on a filtration of the Steenrod Algebra where for p = 2 we have AN =
{Sq1, Sq2, . . . , SqN} ⊂ A and for p > 2 we have AN = {β,Pp0 ,Pp1 , . . . ,PpN−1} the
elements of which are all generators at their respective primes. The following lemma
is a way to formalize how ExtAN

(H∗(Y ),Z/p) approximates ExtA(H
∗(Y ),Z/p).

Lemma 5. For a strongly type n p-local finite CW-spectrum R, like the one above,

and ∀N > n, ∃kN > 0 such that the map Exts,tA (H∗(R),Z/p) ϕ−→ ExtAN
(H∗(R),Z/p)

is an isomorphism if s >
1

2pn − 2
(t− s)− kN . Moreover limN→∞ kN = ∞.
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These approximations allow us to build the following diagram:

ExtA(Z/p,Z/p) ExtA(H
∗(R),Z/p)

ExtAN
(Z/p,Z/p) ExtAN

(H∗(R),Z/p)

ExtE(Qn)(Z/p,Z/p) ExtE(Qn)(H
∗(R),Z/p)

P (vn) P (vn)⊗H∗(R)

K(n)∗ K(n)∗(R)

i

ϕ ϕ

i

λ λ

i

∼= ∼=

i

i

(11)

Where the left isomorphism is, apparently, a standard calculation. (Note, I’m
unsure of what P (vn) means...) The right isomorphism is because of Qn trivially
acting on H∗(Y ) and resulting from the left isomorphism. Finally, the condition
that the rank of H∗(Y ) and K(n)∗(Y ) are the same demonstrates that the bottom
right map is an injection.

The crux of the argument, in our opinion, is the following lemma below which
may or may not be miswritten in Ravenel ([2]Lemma 6.3.3):

Lemma 6. For all N ≥ n there is an integer t > 0 so that vn ∈ im(λ). I.e.
∃x ∈ ExtAN

(Z/p,Z/p) such that λ(x) = vn. NOTE: In Ravenel this appears as
x ∈ ExtAN

(H∗(Y ),Z/p) but we believe this is a typo.

To this end, x represents a ’universal’ vn map which we will attempt to explicate
in the rest of this section. This element x and its image under i lie under the
vanishing line provided by Lemma 4, and moreover lie on a line of that slope through
the origin, necessarily above the line in Lemma 5. Thus we are in the range where
ϕ is an isomorphism, so y = (ϕ−1 ◦ i)(x) ∈ ExtA(H

∗(Y ),Z/p) is a class in the E2

term of the AdSS associated to R. Our goal is now to demonstrate that this is a
permanent cycle and that it gives rise to a vn map. This is the sense in which x is a
’universal’ vn map.

Lemma 7. Some power yp
i
is a permanent cycle in the AdSS.

Proof. Since ϕ(y) = i(x) is the image of a class in the Adams term for the stable
homotopy groups of spheres, y is a central element in ExtAN

and thus commutes
with all elements above the line in Lemma 5.
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If y itself it not a permanent cycle, then ∃r > 0 so that dr(y) = u ̸= 0. Since
the differentials in the AdSS go up and to the left, u is above the line in Lemma 5
as y is. Thus y commutes with u and so dr(y

p) = pyp−1u = 0. If yp is also not a
permanent cycle, we find another r1 > r so that dr1(y

p) = u1 ̸= 0. However, we once
again have that yp and u1 commute, meaning that dr1(y

p2) = 0.
If we continue in this manner, we get a sequence of integers r < r1 < r2 < ...

so that dri(y
pi) = ui. But these ui will at some point go above the vanishing line

guaranteed by Lemma 4, giving that some yp
i
is a permanent cycle.

Because of how we constructed y, and the commutativity of Diagram 11, we know
that yp

i
must project to the same element xpi projects to in K(n)∗(R), which is some

power of vn. Thus the image of yp
i
in π∗(R) is our desired vn map.

3.2.3 Explicit Constructions

Unfortunately, I both don’t understand the Smith construction part well enough,
don’t consider the remaining parts to be too elucidating, and find that Ravenel
obscures too much of the details to the appendices to give a full description of the
construction.

Suffice it to say that Ravenel weakens the assumptions that are a part of the
strongly type n spectra to a weakly type n spectra, and proceeds to construct a
weakly type n spectrum build from the classifying spaces of Z/p. While this is only
a weakly type n spectra, the construction of Smith provides a way to take that weakly
type n spectrum and modify it into being a strongly type n spectrum.
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