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Before we start describing the construction and properies of the spectrum MU , we will
motivate why on Earth we should care about this. We will soon see that MU possesses rich
algebraic structure that imbues it with the ability to detect important algebraic properties of
other spectra.

Explicitly, over the course of this reading group, one of the results we will discuss is the
following

Theorem 0.1 – Nilpotence Theorem - Spectra Version For any ring spectrum
R, x ∈ π∗(R) is nilpotent if it is in the kernel of the Hurewicz/Boardman map π∗(R)→
MU∗(R).

1 Geometry of MU Theory

This description of MU theory develops off of the theory of complex vector bundles, classifying
spaces, and characteristic classes. I assume that the following concepts are already familiar to
the reader:

• Complex Vector Bundles p : E → B

• Sum and Product operators on complex vector bundles

• Grassmannians GFn,k and Universal Bundles γn,k

• Classifying spaces BU,BO, etc,

Theorem 1.1 H∗(BU(n),Z) ∼= Z[c1, c2, . . . , cn] with |ci| = 2i.

Similarly, H∗(BO(n),Z�2Z) ∼= Z�2Z[w1, . . . , wn] with |wi| = i.

The generators of H∗(BU(n)) are called Chern Classes and the generators of H∗(BO(n))
are Steifel-Whitney classes.

1.1 Thom Spectra

If the base space B of a complex vector bundle is paracompact, we can endow it with a Hermitian
Metric, which allows us to define auxilliary bundles.
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Definition 1.1 – Disk and Sphere Bundles Given a complex vector bundle p :
E → B with a Hermitian metric 〈−,−〉 : E×E → C, the Disk Bundle D(p) associated
to the complex vector bundle is a bundle whose fiber over b ∈ B is {e ∈ E : 〈e, e〉 ≤ 1}.
Similarly, the Sphere Bundle S(p) is a bundle whose fiber over b ∈ B is {e ∈ E : 〈e, e〉 =
1}.

With these definitions, we can construct the Thom Space associated to the bundle:

Definition 1.2 – Thom Space With p : E → B and 〈−,−〉 : E × E → C as above,
the Thom Space T (p) of the bundle is the total space of the quotient bundle D(p)/S(p)
(with the quotient induced by the obvious inclusion).

Definition 1.3 –MU(n) With Gn the colimit over the Gn,k’s, and γn defined simi-
larly, we define MU(n) = T (γn) in the complex case, and MO(n) = T (γn) in the real
case.

Since the Thom Space of a bundle is, in a sense, built up from quotients of D2n/S2n−1 ≈ S2n,
there is a cohomology class in T (p) that acts as the generator of these spheres fiberwise:

Definition 1.4 – Thom Class Associated to any complex vector bundle p : E → B
of rank n, there is a class u ∈ H2n(T (p),Z) called the Thom Class so that its restriction
to the fibers S2n is a generator.

Most importantly, these MU(n) spaces ’glue together’ and form a spectrum called the Thom
Spectrum

Definition 1.5 –MU - The Thom Spectrum Defining MU2n = MU(n) and
MU2n+1 = ΣMU(n), we obtain a spectrum with ΣMU2n → MU2n+1 as the obvi-
ous map, and the map ΣMU2n+1 →MU2(n+1) defined by the following proposition.

Proposition 1.1 T (ξ1 ⊕ ξ2) ∼= T (ξ1) ∧ T (ξ2). In particular, If a vector bundle ξ is
isomorphic to ξ′ ⊕ ε with ε the trivial complex line bundle, then T (ξ) ≈ Σ2T (ξ′)

Additionally, we have a map j : BU(n) → BU(n + 1) which classifies ξ 7→ ξ ⊕ ε. From this,

ΣMU2n+1 = Σ2MU2n ≈ T (γ2n ⊕ ε)
T (j)−−−→ T (BU(n+ 1)) = MU(n+ 1) = MU2(n+1) where T (j)

denotes the pullback of j on the Thom spaces.
We can also define a multiplicative structure on the Thom Spectrum via the Thom-ification

of the map classifying direct sums of vector bundles: m : BU(n) × BU(m) → BU(n + m), so
T (m) : MU(n)×MU(m)→MU(n+m) gives MU the structure of a ring spectrum.

Thus, we can speak of the homology and cohomology theory that MU describes, which are
complex bordism and cobordism respectively.

While the spectrum has a lovely geometric interpretation in this manner, it’s algebraic struc-
ture is much more interesting for our purposes.
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1.2 Complex Orientability, Universality, and Formal Group Laws

MU∗ is a complex oriented cohomology theory i.e.

Definition 1.6 – Complex Orientability, Complex Orientation A cohomology
theory E∗ is called complex orientable if the map i∗ : Ẽ2(CP∞)→ Ẽ2(S2) ∼= Ẽ0(S0) ∼=
π∗(E) is surjective. A complex orientation on such a cohomology theory is a choice
of element in the preimage of 1 ∈ π∗(E), i.e. an element xE ∈ Ẽ2(CP∞) so that
i∗(xE) = 1.

Since CP∞ ≈ MU(1) and S ≈ MU(0) the chosen homeomorphism in the former case gives
an element xMU ∈ MU2(CP∞) and the map S2 = Σ2S = Σ2MU(0) → MU(1) = CP∞

corresponds to the inclusion i∗ : M̃U
2
(CP∞) → M̃U

2
(S2) so i∗(xMU ) must be the class of the

unit η : S→MU which is 1. Therefore xMU defines a complex orientation for MU∗. Moreover,
MU∗(CP∞) ∼= MU∗[[xMU ]].

We will see that this complex orientation structure gives rise to a natural formal group law on
π∗(MU). In this direction, note that there is a product structure on CP∞ m : CP∞ × CP∞ →
CP∞ which classifies the tensor product of line bundles. On the cohomology level, this induces
a map m∗ : MU∗[[x]] = MU∗(CP∞)→MU∗(CP∞ × CP∞) ∼= MU∗[[x⊗ 1, 1⊗ x]].

Proposition 1.2 m∗(x) = F (x⊗ 1, 1⊗ x) defines a formal group law over π∗(MU)

From the previous lecture, we know that any formal group law over a ring R is classified by
a map θ : L→ π∗(MU). MU is very special in that

Theorem 1.2 – Quillen’s Theorem The map θ above is an isomorphism of rings
and an isomorphism between the universal F.G.L. and the one defined above on π∗(MU).

As an aside, assuming the nilpotence theorem, since every (positive degree) element in π∗(S)
is torsion, and MU∗(S) = π∗(MU) ∼= L is the Lazard ring (which is torsion free) we immediately
deduce

Theorem 1.3 – Nishida’s Nilpotence Theorem Every positive degree element in
π∗(S) is nilpotent.

Additionally, there is a very strong connection between complex orientations and formal group
laws (mimicing the construction of the F.G.L. in Prop 1.2) in which MU acts as the ’spectra
analogue’ of L.

Theorem 1.4 – Universality of MU For any complex oriented multiplicative co-
homology theory E, choices of complex orientations xE are in 1-to-1 correspondence
with homotopy classes of maps f : MU → E such that f∗(x

MU ) = xE and so that for
the F.G.L. µE(xE ⊗ 1, 1⊗ xE) = m∗(xE), f∗(µ

MU ) = µE .

2 Algebra of MU Theory

Our goal this section will be to study the structure of MU∗(MU), which we will motivate by the
corresponding story in a more familiar homology theory.
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2.1 Steenrod Operations, Eilenberg-MacLane Spectra, and Hopf Al-
gebras

Let E denote the mod p Eilenberg-MacLane spectra, so that E∗(X) = H∗(X;Z�(p)). This

cohomology theory is also equipped with a collection of ’endomorphisms’ called the Steenrod
operations which form an algebra A over which the cohomology groups have a natural module
structure.

I.e. we have a map

A⊗ E∗(X)→ E∗(X)

Dually, this describes a comodule structure

E∗(X)
ψ−→ A∨ ⊗ E∗(X) (1)

Interestingly, A ∼= E∗(E), so A∨ ∼= E∗(E).
Furthermore, we can rewrite Equation 1 to the following:

E∗(X)
ψ−→ π∗(E ∧ E ∧X) (2)

Which is induced by a map on the level of spectra:

E ∧X = E ∧ S ∧X E∧η∧X−−−−−→ E ∧ E ∧X (3)

And since E is a flat ring spectrum (which MU also is) the map E∗(E) ⊗E∗ E∗(X) →
π∗(E ∧ E ∧X) is an isomorphism.

Algebraically, the dual Steenrod Algebra has the structure of a Hopf Algebra, a structure
which we will present in two different manners

Definition 2.1 – Hopf Algebra - Explicit An R-algebra A, equipped with product

A⊗A µ−→ A and unit R
η−→ A is a Hopf algebra, if it is equipped with other maps called

the coproduct A
∆−→ A ⊗ A, augmentation A

ε−→ R, and conjugation A
c−→ A such that

the group structure (from the product, conjugation, and unit) and cogroup structure
(from the coproduct, conjugation, and augmentation) are ’compatible’.

Definition 2.2 – Hopf Algebra - Categorical A Hopf Algebra A over R is a
cogroup object in the category of (graded commutative) R algebras with unit. I.e.
for all other algebras C, there is a natural group structure on Hom(A,C).

For any ring spectrum E, not just the Eilenberg-MacLane spectrum in consideration, the
product, coproduct, unit, and conjugation maps are all manifestations of maps on the topological

objects (after identifying A∗ with π∗(E∧E), Z�(p) with π∗(E), and A∗⊗A∗ with π∗(E∧E∧E)).

Unfortunately, for general ring spectra the unit map π∗(E)
ε−→ π∗(E ∧ E) does not have

a single topological counterpart, but rather two — a left and right unit. Coincidentally, these
induce the same maps on E homology in the case of the Eilenberg-MacLane spectra, but we need
to further generalize for other spectra. Such a generalization will lead us to Hopf Algebroids.
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2.2 MU∗(MU) and Hopf Algebroids

Let us examine the problem more explicitly. Central to the problem is the fact that we have two
spectra-level maps

ηR : E = S ∧ E η∧E−−−→ E ∧ E (4)

ηL : E = E ∧ S E∧η−−−→ E ∧ E (5)

So that E∗(E) becomes a π∗(E) module in two different ways, which we call the right and left
module structures. It turns out that these structures are how E∗(E)⊗π∗(E) E∗(E) is structured
as a bimodule, i.e. π∗(E) acts as a unit via the left unit on the left term, and the right unit on
the right term. To motivate the shift to Hopf Algebroids, notice that the tensor product diagram
after composing with a Hom(−, C) is

Hom(E∗(E)⊗π∗(E) E∗(E), C) Hom(E∗(E), C)

Hom(E∗(E), C) Hom(π∗(E), C)

η∗R

η∗L

(6)

Is ’like’ the diagram describing the composition of maps in a category. In fact, this is the
manner by which we will generalize Hopf Algebras to the case where there are multiple unit
maps, so that the cogroup structure is instead a cogroupoid structure.

Definition 2.3 – Hopf Algebroid A Hopf Algebroid overK is a pair (S,Σ) of graded
commutative K-Algebras with unit, with the additional structure of a cogroupoid ob-
ject in that category, i.e. for any algebra C, (Hom(S,C),Hom(Σ, C)) has the structure
of a groupoid, with the former being the set of objects and the latter being the set of
morphisms. Explicitly, the structure is

Σ
∆−→ Σ⊗S Σ (7)

Σ
c−→ Σ (8)

Σ
ε−→ S (9)

S
ηR−−→ Σ (10)

S
ηL−−→ Σ (11)

which, after applying Hom(−, C) induce composition, inverses, identity morphisms,
target, and source respectively. Σ⊗S Σ is defined similarly to Diagram 6.

In light of Diagram 6 we have the following theorem:

Theorem 2.1 If E is a flat, homotopy commutative ring spectrum, then (π∗(E), E∗(E))
is a Hopf Algebroid over Z. If E is p-local, then it is a Hopf Algebroid over Z(p).

Now, MU satisfies all of the conditions of the above theorem, so, unwinding the defini-
tions, (π∗(MU),MU∗(MU)) forms a Hopf Algebroid. Therefore, for every graded Z algebra C,
Hom(π∗(MU), C) forms the objects in a category whose morphisms are Hom(MU∗(MU), C).
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Remark 2.1 We know that π∗(MU) ∼= L the Lazard ring, which classifies formal
group laws. Thus Hom(π∗(MU), C) is the set of all formal group laws over C! We will
see soon that MU∗(MU) ∼= LB, the classifying ring for strict isomorphisms of formal
group laws as well as that the manner in which it acts on π∗(MU) is the same as the
case for the Lazard Ring. Thus the Hopf Algebroid associated to MU exactly classifies
formal group laws and the strict isomorphisms between them (over a given ring C).

With this formulation, we can now form left comodules over Hopf Algebroids

Definition 2.4 – Left Comodule A Left Comodules over a Hopf Algebroid (S,Σ) is

an S-module M and a left S-linear map M
ψ−→ Σ⊗SM that is counital and coassocaitive.

Right Comodules can be defined similarly, and comodule algebras are (left/right) comodules
such that M is an S-algebra and that ψ is a algebra homomorphism.

Again, these structures arise naturally when we study spectra and their generalized homol-
ogy:

Proposition 2.1 For E a flat, homotopy commutative ring spectrum, E∗(X) is natu-
rally a left comodule over (π∗(E), E∗(E)), with the structure map topologically induced

by E ∧X = E ∧ S ∧X E∧η∧E−−−−−→ E ∧ E ∧X

2.3 The Hopf Algebroid Structure of MU∗(MU)

This section is devoted to fully examining the connection we hinted at in Remark 2.1. In order to
provide the names to some elements later on in the section we once again discuss the homotopy
groups of MU

Theorem 2.2 – Milnor-Novikov

• π∗(MU) ∼= Z[x1, . . .] where |xi| = 2i

• The generators xi can be chosen so that their image under the Hurewicz homo-
morphism h : π∗(MU)→ H∗(MU) ∼= Z[b1, . . .] (where |bi| = 2i) is

h(xi) =

{
pbi + decomposables, if i = pk − 1

bi + decomposables, otherwise
(12)

We also label other special elements mn ∈ π2n(MU) ⊗ Q that come from classes of certain
cobordism classes of complex projective spaces.

The following theorem is what will connect the Hopf Algebroid structure of (π∗(MU),MU∗(MU))
to that of the Lazard ring and the classification of formal group laws.
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Theorem 2.3 – Landweber-Novikov

• MU∗(MU) ∼= MU∗[b1, . . .] with |bi| = 2i.

• The coproduct on MU∗(MU) is given by
∑
i≥0

∆(bi) =
∑
i≥0

(bi⊗ (
∑
j≥0

bj)
i+1) (where

we interpret b0 = 1).

• The left unit ηL : MU∗ →MU∗(MU) is just the inclusion into degree 0.

• The right unit ηR is given by
∑
i≥0

ηR(mi) =
∑
i≥0

(mi(
∑
j≥0

c(bj))
i+1)

• Conjugation is given by c(mn) = ηR(mn) and
∑
i≥0

(c(bi)(
∑
j≥0

bj)
i+1) = 0.

Since the coproduct on MU∗(MU) described above functions exactly like one on B =
Z[b1, . . .], and is moreover determined by such a structure, as well as the right unit map, the
algebroid structure is of a special type called a split Hopf algebroid. Furthermore, the right unit
map MU∗ →MU∗⊗B is a comodule structure map, so that MU∗ becomes a right B-comodule.

Definition 2.5 – Split Hopf Algebroid Generally, a Hopf Algebroid (S,Σ) is split
if there if a Hopf Algebra B such that Σ = S ⊗B and so that the right unit ηR : S →
Σ = S ⊗B gives S the structure of a right B-comodule.

The motivation for the term ’split’ is because for such Hopf Algebroids,

Hom(Σ, C) = Hom(S ⊗B,C) = Hom(S,C)⊗Hom(B,C) (13)

and

S
ηR−−→ S ⊗B
⇓ Hom(−, C)

Hom(S,C)⊗Hom(B,C)
Hom(ηR,C)−−−−−−−→ Hom(S,C)

(14)

So the morphism group splits, and the group Hom(B,C) has a right action on Hom(S,C).
From Dinglong’s talk, we know that the group of isomorphisms between formal group laws

over a ring R is given by ΓR = {f ∈ R[[x]] : f = x +
∑
i≥1

bix
i+1}. We will now construct an

isomorphism Hom(B,R)
∼=−→ ΓR

Theorem 2.4 For g ∈ Hom(B,R), let f(x) ∈ ΓR be f(x) =
∑
i≥0

f(bi)x
i+1. This gives

a map Hom(B,R)
F−→ ΓR which is an isomorphism.

Proof. Since B is freely generated, the map is obviously a bijection; the only nontrivial element
to prove is that it is a homomorphism. However, composing g0(x) =

∑
i≥1

bix
i+1 with g1(x) =∑

i′≥1

b′ix
i+1 is exactly the formula for the coproduct on B, and so F is a homomorphism, thus a

isomorphism.
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To connect MU∗(MU) with the isomorphisms between F.G.L.’s explicitly, we will use the
logarithm of a formal group law introduced in the previous talk and two important properties of
it:

Theorem 2.5 logF (F (x, y)) = logF (x) + logF (y) for a formal group law F over a
torsion free ring R.

and

Theorem 2.6 – Mischenko logG(x, y) =
∑
i≥0

mix
i+1, where mi ∈ π2i(MU) are the

elements introduced at the start of the section, and G is the universal formal group
law.

We prove one more auxiliary proposition, motivated by the desire to use the logarithm to
help facilitate a connection between a formal group law F and its tranform F f under f ∈ ΓR.

Proposition 2.2 logF f (x) = logF (f−1(x))

Proof.
The definition of how f acts on F can be altered to give that f−1(F f (x, y)) = F (f−1(x), f−1(y)).

We then apply logF to get

logF (f−1(F f (x, y))) = logF (F (f−1(x), f−1(y)))

= logF (f−1(x)) + logF (f−1(y))
(15)

while also noting that logF f (F f (x, y)) = logF f (x) + logF f (y). Ravenel notes that you can
compare the two degree by degree, and proceed via induction to show the result of the theorem. I
haven’t been able to tease out the details, but I’m fairly certain the ’degree’ comparison Ravenel
mentions is the comparison of Taylor Series.

We now explicitly connect (MU∗,MU∗(MU)) to the Hopf algebroid of F.G.L.’s and the
isomorphisms between them. We do this with some given θ ∈ Hom(MU∗(MU), R)

B

MU∗ MU∗(MU) R

i θ◦i

ηL

ηR

θ

(16)

Since θ ◦ ηL and θ ◦ ηR are both maps MU∗ → R they classify formal group laws F, F ′ over
R respectively. The composite θ ◦ i : B → R classifies some isomorphism between formal group
laws f ∈ R[[x]]. By the universality of MU∗ and Theorem 2.6, we can compute the logarithms
of F and F ′ as logF (x) =

∑
i≥0

θ(ηL(mi))x
i+1 =

∑
i≥0

θ(mi)x
i+1 and logF ′(x) =

∑
i≥0

θ(ηR(mi))x
i+1.

We would like to be able to show logF ′(x) = logF f (x) = logF (f−1(x)).
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logF (f−1(x)) = (17)∑
i≥0

θ(mi)(f
−1(x))i+1 = (18)

∑
i≥0

θ(mi)(
∑
j≥0

θ(c(bj))x
j+1)i+1 = (19)

θ(
∑
i≥0

mi(
∑
j≥0

c(bj)x
j+1)i+1) = (20)

∑
i≥0

θ(ηR(mi))x
i+1 = logF ′(x) (21)

So F f = F ′ and thus we have shown that (π∗(MU),MU∗(MU)) is ’isomorphic’ to (L,LB)
of the previous lecture.

2.4 Further Discussion of the Algebraic Structure On MU∗(X)

Before we dissect the structure of MU∗(MU) we perform a few algebraic constructions.

Firstly, we consider the following group Γ = {γ ∈ Z[[x]] : γ = x+
∞∑
i=1

bix
i+1} with the group

structure induced by composition of power series. This group acts on the Lazard ring (and
therefore π∗(MU)) in the following manner. Given the universal formal group law G(x, y) ∈
L[[x, y]] and γ ∈ Γ, we can construct a new formal group law γG = γ−1(G(γ(x), γ(y))) which,
by the universality of the Lazard ring, is induced by a self map fγ : L→ L. As γ is an invertible
power series, this self map must be an automorphism, which is exactly the structure of an action
of Γ on L.

We encode this structure for L modules as follows

Definition 2.6 –CΓ Let CΓ be a category whose objects are L-modules M together
with an action by Γ that is compatible with the L-module structure, i.e. γ(`m) =
γ(`)γ(m) for all γ ∈ Γ, ` ∈ L,m ∈M .

Importantly, every MU -homology group has both the structure of a L ∼= π∗(MU)-module,
as well as an action by Γ which has been developed in the preceding section. For now, the
important point is that MU∗ thus becomes a functor into the very well behaved category CΓ,
with its structure and behavior being responsible for the major theorems we will prove over this
semester.

Additionally, we will let the elements vn ∈ L be the coefficient of xp
n

in the universal formal
group law G(x, y) over L. These vn’s are related to those from Morava K-Theory which we will
see in later lectures, and which describe periodic ’families’ in the stable homotopy groups of
spheres. These elements have degree 2pn − 2 and are indecomposable, which means they could
serve as polynomial generators in their dimension.

These vn’s encode a lot of structure about modules in CΓ via the following:
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Theorem 2.7 – Invariant Prime Ideal Theorem The only prime ideals in L which
are invariant under the action of Γ are ideals of the form Ip,n = 〈p, v1, v2, . . . , vn〉 for

0 ≤ n ≤ ∞. In L�Ip,n, the only subgroup that is fixed by Γ is Z�(p)[vn].

Thus the manner by which Γ acts on L is very rigid. This structure transfers to the modules
in CΓ, partially due to the fact that L is coherent (a condition closely related to a ring being
Noetherian). In the Noetherian case, for any finitely presented module M over such a ring R,

there always exists a filtration such that its subquotients are isomorphic to R�p for p ⊂ R prime.
For the Lazard Ring, not only can we find a similar filtration F1M ⊂ F2M ⊂ . . . ⊂ FkM = M
such that the subquotients are isomorphic to quotients by prime ideals, but the filtration is
compatible with the Γ action.

Theorem 2.8 – Landweber Filtration Theorem Every module M ∈ CΓ can be
filtered by a finite chain of submodules as above such that:

1. Each submodule FiM is invariant under the action of Γ

2. Each subquotient Fi+1M�FiM is isomorphic to (a suspension of) L�Ip,n for n

finite.

This is a nice fact, but it is not immediately obvious why one might care about the existence
of such filtrations. As we noted in the beginning of this section, the rich structure of CΓ is one of
the reasons for the results central to this reading group. The above theorems allow us to prove
the following facts

Proposition 2.3 For a p-local M ∈ CΓ and x ∈M , the following are true:

1. If vinx = 0 for some i, then vjn−1x = 0.

2. If x is a nontrivial element of M , then ∃n : ∀k, vknx 6= 0

3. If each element in M is annhilated by a power of vn−1, then multiplication by vn
commutes with the Γ action

4. If some element of M is not annhilated by any power of vn−1, then multiplication
by vn does not commute with the Γ action.

Remark 2.2 The above statements should be interepreted as algebraic analogues of
the following toplogical facts concerning the Morava K-Theories K(n)∗

1. ForX a p-local finite CW complex, K(n)∗(X) vanishing imples thatK(n− 1)∗(X)
vanishies.

2. If, moreover, X is not contractible then there exists an n such that K(n)∗(X) ∼=
K(n)∗(∗)⊗H∗(X;Z�(p)).

and the third statement should be interpreted as an algebraic analogue of the Period-
icity Theorem.
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