
WEEK 1 NOTES, REVIEW OF SOME HOMOTOPY THEORY
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Safe to assume some understanding of: homotopy equivalence, basic category theory, CW-complexes,
homotopy groups, generalized (co)homology theories. (Loop spaces? Suspensions? Brown representabil-
ity?)

1. Space-Level Stuff

1.1. Suspensions, Loops. Given a based space (X, x0) we define its reduced suspension and loop space

ΣX := X × I/ ∼ and ΩX := Map∗(S
1, X),

Where ∼ identifies all the points X × {0}, X × {1}, and {x0} × I, and where Map∗(C,D) denotes the space
of continuous, based maps C → D with the compact-open topology. Given a based map f : X → Y , we
define Σ f ,Ω f between the suspension/loop spaces in the obvious way. These describe functors

Σ,Ω : Top∗ → Top∗ and Σ,Ω : Ho(Top)∗ → Ho(Top)∗

Definition 1.1. Suppose as given a map f : ΣX → Y . Each point x ∈ X determines a loop f ({x} × I) in
Y . This describes a based map f̂ : X → ΩY , the adjoint to f .

Proposition 1.2. The mapping f 7→ f̂ describes isomorphisms

Map∗(Σ
iX,Y)→ Map∗(X,Ω

iY) and [ΣiX,Y]→ [X,ΩiY].

(Corollary: πn+kY � πnΣ
kY.) In fact, this latter isomorphism is natural in X and Y, so we get Σ ⊣ Ω.

1.2. Cofibers. Given a map f : X → Y , we define its cofiber or mapping cone to be the space

C f := ((X × I) ∪ Y) / ∼,

Where ∼ collapses X×{0} and glues X×{1} to f (X) ⊆ Y in the obvious way. If, in addition, everything is
based, then we additionally collapse {x0}× I to a basepoint. The cofiber comes with a canonical inclusion

i f : Y ↪→ C f .

It is easy to see that Ci f ≃ ΣX, thus we may form a map j f : C f → ΣX.

Definition 1.3. Given a map f : X → Y , the cofiber sequence generated by f is the sequence of maps

X Y C f ΣX ΣY CΣ f Σ2X · · ·
f i f j f Σ f iΣ f jΣ f

A cofiber sequence is a sequence of maps arising this way.
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We think of a cofiber sequence as a long exact sequence of spaces, for up to homotopy equivalence,
any two consecutive maps in a cofiber sequence are the composite of an inclusion and a quotienting of
its image. Cofiber sequences induce a long exact sequence of homotopy classes of maps.

Proposition 1.4. Suppose f : X → Y is a based map of path-connected CW complexes. For any based
space Z, the cofiber sequence generated by f induces a sequence

· · · [ΣC f ,Z] [ΣY,Z] [ΣX,Z] [C f ,Z] [Y,Z] [X,Z]

This is a long exact sequence of pointed sets, or of groups to the left [ΣX,Z].

Remark 1.5. The map f̂ : X → C f given by x 7→ (x, 1) is a cofibration. Also, there is an obvious
deformation retract C f → Y (in particular, a homotopy equivalence). The composite X → C f → Y
equals f . So, up to a homotopy equivalence, we can replace maps f with cofibrations f̂ .

Remark 1.6. There is a dual theory for fibrations. I won’t develop this. It is worth reading Concise
about this stuff.
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2. Spectra-Level Stuff

2.1. Basic definitions. A spectrum X is a collection of pointed spaces {Xi} and maps {ΣXi → Xi+1}.
If all the adjoint maps Xi → ΩXi+1 are weak equivalences, we call X an Ω-spectrum. One good way
to motivate spectra (specifically Ω-spectra) is that they are the objects needed to represent reduced
cohomology theories. They are also a good framework to think about stable phenomena.

Definition 2.1. Now here is some terminology. Let X be a spectrum.
• Homotopy groups: πkX := colim πn+kXn.
• Generalized homology: Given a reduced homology theory Ē∗ we define Ek(X) := colim En+kXn.

Another way to go about this is to say, for a spectrum E, to define EnX := πn(XE).
• Generalized cohomology: Given a spectrum E, we define En(X) := [ΣnX, E].
• A spectrum is connective if its homotopy groups are bounded below.
• A spectrum has finite type if its homotopy groups are finitely-generated.
• A spectrum X is finite if there is a finite CW-complex C such that Xn = Σ

nC and the structure
maps are the identities.

Definition 2.2. A sequential map of spectra f : E → F is a collection of maps fn : En → Fn such that
Σ fn and fn+1 commute with the structure maps.

The notion of a sequential map is too restrictive. There are things we want as maps or spectra that
are not sequential maps, see e.g. p. 130 of the orange book. Ravenel defines a map of spectra X → Y as
a map from X to a homotopy-equivalent replacement of Y by an Ω-spectrum.

Definition 2.3. A map of spectra f : E → F is a collection of maps

fn : En → colimΩkFn+k

Satisfying fn = Ω fn+1.

(Say something about eventually-defined maps?)
One point of spectra is to let us do algebra that we wanted to do with spaces. The smash product is

an important structure for doing this. Getting the definition right is very hard, let’s keep with Ravenel
and give the following limited definition.

Definition 2.4. The naive smash product of two spectra E, F is the spectrum given by

(E ∧ F)2n := En ∧ Fn,

(E ∧ F)2n+1 := ΣEn ∧ Fn.

Definition 2.5. Somewhat more easy, the smash product of a spectrum and a space of a spectrum X and
a pointed space A is given by (X ∧ A)n := Xn ∧ A.

Definition 2.6. The homotopy category of CW-spectra has
• As objects, spectra whose spaces have CW homotopy type; and
• As morphisms, homotopy classes of maps of spectra. (Haven’t defined homotopy. It’s more-or-

less what it should be: a map X ∧ I+ → Y , the domain being the “cylinder spectrum,” such that
the original maps are compatible through the inclusions to endpoints.)

Thus we have categories of CW spectra and its homotopy category, denoted SpCW and SHC.

2.2. Examples of spectra.
• Given a spectrum X, its i-th suspension is given as (ΣiX)n := Xn+i.
• Given a space X, its suspension spectrum Σ∞X is defined by (Σ∞X)n = Σ

nX, with structure maps
the identity. This defines a functor Top∗ → SHC.
• The sphere spectrum S is the suspension spectrum of S 0, i.e. Σ∞S 0. One has Sn � S n and
πkS � π

s
k.

• For an abelian group G, we can form the Eilenberg-Maclane spectrum by (HG)n := K(G, n).
The structure maps come from the homotopy equivalences K(G, n) ≃ ΩK(G, n + 1) and the
loop-suspension adjunction.
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• For an abelian group G, the Moore spectrum of G, written MG or S G, is characterized as (1)
having only one nonzero homotopy group π0 = G, and (2) zero singular homology in positive
degrees. For a construction see Adams p. 217. I think we write S/(p) for the Moore spectrum of
Z/p?

2.3. Homotopy direct limits. Just as for pointed spaces, the coproduct of any collection of spectra {Zi}

is built out of wedges: one has
∐

i Zi �
∨

i Zi where the latter has
∨

i(Zi)n as its n-th space. The formation
of coproducts commutes with π∗, smashing with a spectrum − ∧ E, and E∗.

Denote by X the following directed system of spectra.

X1 X2 X3 · · ·
f3f2f1

We want to form the direct limit of this system. If the Xi are replaced by abelian groups Ai, this is easy:
we take the shift map s :

⊕
i Ai →

⊕
i Ai given by ai 7→ ai − f (ai) and take its cokernel. It’s plausible

that there is an analogous shift map s :
∨

Xi →
∨

Xi that induces the shift map on homology. (To-do:
what is the map? Ravenel just says it exists. Maybe check blue book?) This induces the shift map on
homology groups. Then we want its “cokernel.” This amounts to taking cofibers.

Definition 2.7. Let f : X → Y be a map of spectra. Denote by C f or Y ∪ f CX the cofiber of f .
Imprecisely, it’s what you think it is: it is constructed by replacing f by a collection of cellular maps and
forming cofibers at every n-th level. (We need to be imprecise because we’re avoiding terminology; see
Adams p. 172.)

Definition 2.8. We define the homotopy direct limit hocolim X of X as the cofiber of the shift map:

hocolim X := cofib

s :
∨

i

Xi →
∨

i

Xi

 .
Proposition 2.9. Homology E∗ commutes with homotopy direct limits.

Proposition 2.10. The homotopy direct limit is not a categorical colimit. Rather, there is a long exact
sequence relating the graded pieces1 of

∏
i[Xi,Y] and [hocolim X,Y]. (Written out on Ravenel, p. 142.)

The point: if a set of maps {gi : Xi → Y} is compatible, we get a map g : hocolim X→ Y through which
they factor, but [g] may not be uniquely determined.

Proposition 2.11 (A.5.8 in Ravenel). Let X be any CW spectrum. Recall that a spectrum is called finite
if it is equivalent to a finite CW complex. A finite subspectrum of X is a map F → X where F is a finite
spectrum. These form a category in the obvious way. In fact, this category is directed, so we may form
its homotopy colimit hocolim Fα. By construction, there is a canonical map

λ : hocolim Fα → X.

This map is a weak homotopy equivalence. So, any CW spectrum is canonically the hocolim of its finite
subspectra.

It’s worth looking at the (not hard) proof of this proposition.

Proposition 2.12 (Milnor SES). For any spectrum E and each integer n we have a short exact sequence

0→ lim1
←En−1(Xi)→ En(hocolimX)→ lim←En(Xi)→ 0.

Corollary 2.13. If X, E are spectra such that the inverse system {En−1Xn}n is Mittag-Leffler, then two
maps X → E are homotopic if their components Xn → En are(?)

2.4. Homotopy inverse limits. The product of a collection of spectra {Xα} is not in general as easy
to construct as the coproduct. Ravenel constructs (A.4.3) it using Brown representability: the functor∏
α[−, Xα] satisfies the E-S axioms and the wedge axiom, hence is represented by a spectrum christened∏
α Xα, and this is a categorical product. If the collection {Xα} is finite, then this product coincides with

the coproduct. If the Xα are Ω-spectra, then the product can be explicitly constructed out of cartesian
products of underlying spaces (see the proof of A.4.3), as one might expect.

1This is something I think also gets a little lost when we do away with a full-frontal definition of maps of spectra. See Adams,
p. 159 and onward.
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Proposition 2.14. Unlike for coproducts, if {Xα} is an infinite collection of spectra, taking the product
does not commute with smashing in general, in particular E-homology for a spectrum E. Here are two
exceptions.

(1) If E and the Xα are connective, and for each n one has πnXα = 0 for all but finitely many α, then

E∗(
∏

Xα) =
⊕

(E∗Xα).

(2) Likewise if E is finite.

Denote by X the following inverse system of spectra.

· · ·
f3
−→ X3

f2
−→ X2

f1
−→ X1

Analogous to the colimit, we will define the homotopy inverse limit as the fiber of a map, defined so that
it induces on homology the map whose kernel is the typical inverse limit of a system of abelian groups.
(See Ravenel p. 146 for slightly more.)

Proposition 2.15. There is a shift map

s :
∏
α

Xα →
∏
α

Xα

Which on homology induces the shift map (a1, a2, . . . ) 7→ (a1 − f1(a2), a2 − f2(a3), . . . ). (???)

Definition 2.16. The homotopy inverse limit of X, written holim X, is defined as

holim X := Σ−1cofib(s).

(The desuspension of the cofiber is the fiber.)

Proposition 2.17. The homotopy inverse limit is not a categorical limit. But, for a finite spectrum E
(e.g., the sphere spectrum) and each integer n, there is a functorial short exact sequence

0→ lim1
←En+1(Xi)→ En(holimX)→ lim←En(Xi)→ 0.
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2.5. Structured spectra. A ring spectrum is a spectrum E together with a multipliation m : E∧E → E
and a unit η : S→ E such that the three diagrams for unitality/associativity are homotopy commutative.
If, in addition, the commutativity diagram is homotopy commutative, we say E is commutative.

Now suppose as given a ring spectrum E. A E-module spectrum is a spectrum M with a (homotopy)
action by E; that is, a map µ : E∧M → M such that the following diagrams are homotopy commutative.
(I think Ravenel has a typo in his diagram.)

E ∧ E ∧ M E ∧ M M = S ∧ M M ∧ M

E ∧ M M Mµ

µid∧µ

m∧id

id

η∧id

µ

The sphere spectrum is the unit for the smash product. As a result, elements in a spectrum’s homo-
topy act upon it.

Definition 2.18. Let E be a ring spectrum. Suppose as given an element v ∈ πdE represented by a map
f : S d → E. We may consider the composite

ΣdE = S d ∧ E
f∧id
−−−→ E ∧ E → E.

We denote this by composite by f also. We have an induced map π∗−dE = [S 0,ΣdE]
f∗
−→ [S 0, E] = π∗E,

which turns out to be multiplication by v. Now we define a spectrum v−1E as the homotopy direct limit
of multiplication by v−1:

v−1E := hocolim
(
E

f
−→ Σ−dE

f
−→ Σ−2dE → · · ·

)
.

Proposition 2.19. The spectrum v−1E is an E-module spectrum (is there an obvious/canonical map?)
and has homology E∗ ⊗Z[v] Z[v, v−1].

Also, here is a definition.

Definition 2.20. A ring spectrum E is called flat if E ∧ E is equivalent to a wedge of suspensions of E.
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