
THE NILPOTENCE THEOREM

These expository notes sketch a proof of the following result from [1]:

Theorem 0.1 (Devinatz–Hopkins–Smith). Let R be a connective ring spectrum of finite type and

hMU∗ : R∗ → MU∗R the Hurewicz map. Given α ∈ π∗R, if hMU∗(α) ∈ MU∗R is 0 then α is

nilpotent.

1. Introduction

1.1. Periodic phenomena. For fixed primes p > 2 Adams constructed self-maps v1 of the mod

p Moore spectrum:

Σ2p−2S0/p
v1−→ S0/p.

The map v1 induces an isomorphism in K-theory, so any iterate vn1 is non-zero. In fact, one may

construct an infinite family in the homotopy group of spheres out of this:

Sn(2p−2) → Σn(2p−2)S0/p
vn1−→ S0/p → S1.

Varying n one gets the order p part of the image of the J-homomorphism. The picture below

illustrates the case p = 3.

• • • • • • • • •

• • •

•

This can be extended for example to the Smith–Toda complex V (1) := cofib(v1) for p ≥ 5, which

admits v2-self maps Σ2(p2−1)V (1)
v2−→ V (1). The effect of this map is no longer an isomorphism on

K-theory: one must detect it using something other spectrum.

The nilpotence theorem says that MU is a spectrum that detects all periodicity phenomena: the

kernel of the Hurewicz image filters out only nilpotent elements.

1.2. Versions of nilpotence. A predecessor to the nilpotence theorem is the following result of

Nishida, a special case of the general nilpotence theorem:

Theorem 1.1 (Nishida). Every element of π∗(S
0) for ∗ > 0 is nilpotent.

One may regard the multiplication in π∗(S
0) either as coming from the ring structure, the

composition of self-maps or smash products. In turn there are three possible generalizations:

(1) For R a ring spectrum, a map Sm → R is nilpotent if αn = 0 ∈ π∗R for n ≫ 0.

(2) A self-map f : ΣdX → X is nilpotent if fn is null for n ≫ 0.

(3) A map f : F → X where F is finite is nilpotent if f⊗n : F⊗n → X⊗n is null for n ≫ 0.

It turns out that MU detects all three forms of nilpotence and they all follow from Theorem 0.1.
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1.3. Relation to other results. We have ⟨MU⟩ =
⊕

p⟨BP⟩. Furthermore, by a result of Ravenel,

⟨BP⟩ = ⟨K(1)⟩ ⊕ · · · ⊕ ⟨K(n)⟩ ⊕ ⟨BP⟨n+ 1⟩⟩.

As a corollary, one gets the following more refined version of the nilpotence theorem using Morava

K-theories:

Theorem 1.2 (Hopkins–Smith). (1) Let R be a p-local ring spectrum. An element α ∈ π∗R

is nilpotent if and only if K(n)∗α is nilpotent for all 0 ≤ n ≤ ∞.

(2) A self-map f : ΣkF → F of the p-localization of a finite spectrum is nilpotent if and only

if K(n)∗f is nilpotent for all 0 ≤ n < ∞.

(3) A map f : F → X from a finite spectrum to a p-local spectrum is smash nilpotent if and

only if K(n)∗f = 0 for all 0 ≤ n ≤ ∞.

From there the thick subcategory theorem and the periodicity theorem follow. In fact the thick

subcategory theorem turns out to be equivalent to the nilpotence theorem.

2. Overview of the proof

First we record a lemma which is useful throughout.

Lemma 2.1. For E a ring spectrum, the Hurewicz image of α ∈ πm(R) in Em(R) is nilpotent if

and only if E ⊗ α−1R ≃ ∗. Here α−1R is the colimit

R
α−→ Σ−mR

α−→ Σ−2mR
α−→ · · ·

Remark 2.2. This boils down to the fact that multiplication by α for the R-module structure on

E ⊗R is the same as multiplication by the Hurewicz image of α for the ring structure on E ⊗R.

Notice that it breaks down if E is not a ring spectrum.

The lemma implies that we would be done if ⟨MU⟩ = ⟨S0⟩. This is not true! See Remark 2.8

below.

We give a sketch of the proof, following Devinatz–Hopkins–Smith:

(1) Filter hMU : S0 → MU by intermediate spaces denoted X(n) as

S0 = X(1) → X(2) → · · · → X(∞) = MU.

Here X(n) denotes the Thom spectrum

X(n) := Th(ΩSU(n) → ΩSU ≃ BU)

where the second map is obtained from Bott periodicity (the only difference in SU and

U ≃ SU× S1 is in π1).

Algebraically:

H∗(MU) ∼= Z[b1, b2, . . . ], H∗(X(n)) ∼= Z[b1, b2, . . . , bn−1]

where |bi| = 2n.

Remark 2.3. The X(n)’s are in fact E2-ring spectra.
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(2) Work p-locally for each prime p. Filter the maps X(n)p → X(n + 1)p further by certain

spectra Gj:

X(n)p = G0 → G1 → · · · → G∞ = X(n+ 1)p.

To define Gj we first set Bk as the homotopy pullback

Bk ΩSU(n+ 1)

JkS
2n ΩS2n+1

.

Here JkS
2n is the kth stage of the James construction on S2n (Appendix A), and the right

vertical map comes from the fibration

SU(n) → SU(n+ 1)
e−→ S2n+1.

Now let Fk be the Thom spectrum of Bk → ΩSU(n+ 1) → BU and

Gj := (Fpj−1)p.

Notice that B0 ≃ fib(ΩSU(n + 1) → ΩS2n+1) ≃ ΩSU(n), and G0 ≃ X(n)p. We will omit

the lower script p from now on.

Algebraically,

H∗(Fk) ∼= Z[b1, b2, . . . , bn−1]{1, bn, b2n, . . . , bkn}

as a module over H∗(X(n)) ∼= Z[b1, b2, . . . , bn−1].

(3) To execute the proof, first pass from X(∞) to some X(n). Since colim nX(n) ≃ MU, we

obtain from hMU(α) = 0 that hX(n)(α) = 0 for n ≫ 0. This reduces the nilpotence theorem

to the following (backward) inductive claim:

Theorem 2.4. If hX(n+1)(α) = 0 then hX(n)(α) is nilpotent.

Now we pass from G∞ to some finite Gj.

Theorem 2.5 (“Step II”). If hX(n+1)(α) is nilpotent, then Gj ⊗α−1R ≃ ∗ for some j ≫ 0.

Remark 2.6. There is no ring structure on Gj, so one cannot apply Lemma 2.1. It is

true that the Hurewicz image of α is 0 in Gj for j ≫ 0, but this does not imply that

Gj ⊗ α−1R ≃ ∗.

Finally, we need the following key result of the entire proof

Theorem 2.7 (“Step III”). ⟨Gj+1⟩ = ⟨Gj⟩.

Together with Step I, it implies that G0⊗α−1R = X(n)p⊗α−1R ≃ ∗, i.e., hX(n)(α) = 0.

By induction, hX(0)(α) = 0, i.e., π∗(α) = 0 after p-localizing for any p. This completes the

proof.

Remark 2.8. It turns out that ⟨X(pk − 1)p⟩ > ⟨X(pk)p⟩, even though in the intermediate

steps we do have ⟨X(n)p⟩ = ⟨Gj⟩ for all j!
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3. Proof sketch for Step II

Below we sketch a proof of the following:

Theorem 3.1. If hX(n+1)(α) is nilpotent, then Gj ⊗ α−1R ≃ ∗ for some j ≫ 0.

Without loss of generality replace α by a power αn so we may assume hX(n+1)(α) = 0. This

means the representing element α̂ ∈ Es,s+d
2 in the X(n + 1)-based Adams spectral sequence has

non-zero slope s/d. Now show that

Lemma 3.2. Es,t
2 (Gj) and Es,t

2 (R⊗Gj) has a vanishing line with slope

1

2pjn− 1
.

Assuming the lemma, choose j large enough so that

s

d
<

1

2pjn− 1
.

For any β̂ ∈ Es,t
2 (R ⊗Gj), we have that β̂α̂n = 0 if n ≫ 0. But this means Es,t

2 (α−1R ⊗Gj) ≡ 0.

We conclude that

π∗(α
−1R⊗Gj) = 0.

There are different methods to establish Lemma 3.1. In [4] this is accomplished by finding a

specific X(n+1)-Adams resolution for the spectra Gj and R⊗Gj whose kth associated graded is

(2pjn− 1)s-connected. An algebraic approach is taken in [1].

Remark 3.3. This part is where we need the assumption on connectivity of R (which turns out

to be redundant).

4. Proof sketch for Step III

Below we sketch a proof of the following:

Theorem 4.1. ⟨Gj⟩ = ⟨Gj+1⟩.

4.1. The self-map b. As we will see, this eventually boils down to constructing a self-map

b : Σ2npj+1−2Gj → Gj

and showing that it is nilpotent. We now skecth the construction of b. Take p = 5 for illustration

purposes.

Recall that Gj = Fpj−1 and

H∗(Fk) ∼= Z[b1, b2, . . . , bn−1]{1, bn, b2n, . . . , bkn},

We start from the cofiber sequence

Gj → Gj+1 → Σ2npjF(p−1)pj−1.
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Represent Gj as a cell. The above cofiber sequence can be illustrated as follows:

2n(p− 1)pj • •

• •

• •

2npj • •

0 • •

Gj Gj+1 Σ2npjF(p−1)pj−1

Now consider the composition

r : Gj+1 → Σ2npjF(p−1)pj−1 → Σ2npjGj+1

illustrated by

2npj+1 •

2n(p− 1)pj • • •

• • •

• • •

2npj • • •

0 •

Gj+1 Σ2npjF(p−1)pj−1 Σ2npjGj+1

Define K := cofib(r). The spectrum Σ−1K has two “Gj cells”, one in “dimension 0” and the

other in “dimension 2npj+1 − 1”.

Definition 4.2. Define the map b : Σ2npj+1−2Gj → Gj as the “attaching map” of the top cell of

Σ−1K. Namely, it fits into a cofiber sequence

Σ2npj+1−2Gj
b−→ Gj → Σ−1K.
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The following is immediate for dimension reasons:

Proposition 4.3. (HFp)∗(b) = 0.

4.2. Bousfield classes. Recall the following result regarding Bousfield classes ([4, Proposition

7.2.6]):

Proposition 4.4. (1) If X → Y → Z is a cofiber sequence then ⟨Z⟩ ≤ ⟨X⟩ ⊕ ⟨Y ⟩
(2) If ΣnX

f−→ X → Cf is a cofiber sequence then ⟨X⟩ = ⟨Cf⟩ ⊕ ⟨f−1X⟩.

Applying this proposition gives

(1) There is a cofiber sequence Gj+1
r−→ Σ2npjGj+1 → K. Therefore,

⟨K⟩ ≤ ⟨Gj+1⟩.

(2) There is a cofiber sequence Σ2npj+1−2Gj
b−→ Gj → Σ−1K. Therefore,

⟨Gj⟩ = ⟨b−1Gj⟩ ⊕ ⟨K⟩

(3) There’s a filtration

Gj = Fpj−1 ↪→ F2pj−1 ↪→ · · · ↪→ Fpj+1−1 = Gj+1

where all the successive cofibers are suspensions of Gj. Therefore,

⟨Gj⟩ ≥ ⟨Gj+1⟩.

We conclude that

⟨Gj+1⟩ ≤ ⟨Gj⟩ ≤ ⟨Gj+1⟩ ⊕ ⟨b−1Gj⟩.
It now suffices to show b−1Gj ≃ ∗. The proof of Theorem 4.1 thus reduces to the following claim:

Theorem 4.5. The map b : Σ2npj+1
Gj → Gj is nilpotent.

4.3. Nilpotence of b. We will demonstrate nilpotence of b factoring it through Brown–Gitler

spectra. The argument resembles Nishida’s proof of Theorem 1.1, see [4, §9.6].
Recall that Gj is the Thom space of Bpj−1, which is a pullback

Bpj−1 ΩSU(n+ 1)

Jpj−1S
2n ΩS2n+1

It turns out (Theorem A.3) that this can be extended to two fiber sequences

Ω2S2npj+1 Bpj−1 ΩSU(n+ 1) ΩS2npj+1

Ω2S2npj+1 Jpj−1S
2n ΩS2n+1 ΩS2npj+1H

There is a “group action” that renders Bpj−1 as a “homogeneous space”:

Ω2S2npj+1 ×Bpj−1 → Bpj−1.
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Passing to Thom spectra one gets a map

µ : Σ∞
+Ω2S2npj+1 ⊗Gj → Gj.

Recall the Snaith splitting (Theorem B.3 with m = npj)

Σ∞
+Ω2S2npj+1 ≃ (S0 ⊕ S2npj−1)⊗

⊕
i≥0

Σi|b|Di

such that there are maps ℓ : Di → Di+1 with colimit HFp (see §B.2).
The following result is the key to the proof.

Proposition 4.6. The map bi factorizes as

Σi|b|Di ⊗Gj Σ∞
+Ω2S2npj+1 ⊗Gj

Σi|b|Gj Gj

µ

bi

From this we obtain a diagram

Gj D1 ⊗Gj D2 ⊗Gj · · ·

Gj Σ−|b|Gj Σ−2|b|Gj · · ·

µ µ

b b

Taking colimits, this gives a factorization of Gj → b−1Gj as

Gj → HFp ⊗Gj → b−1Gj

Inverting b in the above, one sees that idb−1Gj
factors as

b−1Gj → HFp ⊗ b−1Gj → b−1Gj,

but the middle map is trivial since HFp(b) = 0 (Proposition 4.3). This means b−1Gj ≃ ∗ as desired.

Appendix A. The James–Hopf map

The James construction on a pointed space X is given by

JX :=
∐
i≥0

X i/ ∼,

where

(x1, . . . , xj, ∗, xj+1, . . . , xn) ∼ (x1, . . . , xj, xj+1, . . . , xn).

In modern language, JX is an explicit model of the free E1-algebra on X.

The kth stage of the James construction on X is its k-skeleton

Jk(X) :=
∐

k≥i≥0

X i/ ∼

Theorem A.1. We have

JX ≃ ΩΣX, ΣJX ≃
∨
i≥0

ΣX∧i
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The projection ΣJX → ΣX∧i corresponds, by adjunction, to the James–Hopf map:

JX
H−→ JX i.

Remark A.2. (1) This is not a map of E1-algebras in general.

(2) This map is related to the Hopf invariant: take X = Sn and i = 2. The map reads

ΩSn+1 H−→ ΩS2n+1,

which upon taking π2n(−) gives the Hopf invariant

π2n+1(S
n+1) → π2n+1(S

2n+1) ∼= Z.

Specializing to the case where X is a sphere, one gets an explicit description of the fiber:

Theorem A.3. We have a 2-local fiber sequence

Sn → JSn H−→ JS2n

and a p-local fiber sequence for p > 2

Jp−1S
2n → JS2n H−→ JS2np.

Appendix B. The spectrum Σ∞
+Ω2S2m+1

Here we record some facts about Σ∞
+Ω2S2m+1, the free E2-algebra on S2m−1. Most of the content

here are contained in [4, §9.4].

B.1. Snaith splitting. We describe an explicit description of the splitting of Ω2S2m+1 after sta-

bilization.

Proposition B.1. For any m > 0,

H∗(Ω
2S2m+1;F2) ∼= P(x2m−1, x4m−1, x8m−1, . . . ).

For any m > 0 and any p > 2,

H∗(Ω
2S2m+1;Fp) ∼= E(x2m−1, x2pm−1, x2p2m−1, . . . )⊗ P(y2pm−2, y2p2m−2, . . . ).

Here subscripts indicates the dimension of generators.

We assign a weight to each generator:

|x2pim−1| = |y2pim−2| = pi.

Theorem B.2 (Snaith). There is a decomposition

Σ∞
+Ω2S2m+1 ≃

⊕
i≥0

Dm,i,

with H∗(Dm,i;Fp) ⊂ H∗(Ω
2S2m+1;Fp) being the part spanned by monomials of weight i.

In particular, Dm,i ≃ ∗ unless i ≡ 0, 1 mod p. Furthermore, we have the following facts:

(1) Dm,0 ≃ S0.

(2) Dm,1 ≃ S2m−1.
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(3) Dm,pi+1 ≃ Σ2m−1Dm,pi

(4) Dm,pi ≃ Σ2i(pm−1)Di, where the Di’s are Brown–Gitler spectra independent of m.

(5) D0 ≃ S0 and D1 ≃ S0/p.

The above splitting can thus be reformulated as follows.

Theorem B.3. There is a decomposition

Σ∞
+Ω2S2m+1 ≃ (S0 ⊕ S2m−1)⊗

⊕
i≥0

Σ2i(pm−1)Di

B.2. Construction of ℓ. The map µ : Ω2S2m+1 × Ω2S2m+1 → Ω2S2m+1 stabilizes to give multi-

plications

Dm,i ⊗Dm,j → Dm,i+j.

In particular, one gets a map

ℓ : Di → D1 ⊗Di → Di+1.

The effect of this on homology is multiplicaiton by y2pm−2. Thus,

H∗(colim ℓ(Di)) ⊂ y−1
2pm−2H∗(Σ

∞
+Ω2S2m+1)

can be identified with the weight 0 part of the right hand side. This is isomorphic to HFp∗HFp as

a right A-module, so we have

colim ℓ(Di) ≃ HFp.
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