BP-theory \& the Adams spectral sequence
Refererees:

- Raverel, "Nilpoterce \& periodicity in stable honotopy theory".
- Raverel, "Complex cobordisu \& stable homotopy groups of spheres."
- Wilson, "Brown- Peterson homology: An introduction and sampler."

The original homology theory $H \mathbb{Z}$ rider: probe a space X with the most basic n-din'l objects.

$$
\begin{gathered}
\sigma: \Delta^{n} \longrightarrow X \\
\Rightarrow S_{*} X \Rightarrow H_{*}(X ; \mathbb{Z})
\end{gathered}
$$

- degree n homology classes represent n-dm'l "shapes" present in X.

A model for n-din'l shapes: Manifolds

$$
\begin{aligned}
& \text { manfold } M \Rightarrow[\mu] \in H_{*}(\mu ; \mathbb{Z} / 2) \\
& f: M \rightarrow X \Rightarrow f_{*}[\mu] \in H_{*}(X ; \mathbb{Z} / 2) \\
& {\left[\begin{array}{l}
\text { Thy }:(\text { Them }) \\
\exists f: M \rightarrow X, \forall \alpha \in H_{*}(X ; \mathbb{Z} / 2) \\
\text { s.t. } \alpha=f_{*}[M] .
\end{array}\right.}
\end{aligned}
$$

We can rephrase this as:

$$
M O \simeq \bigvee_{k} H \mathbb{Z} / 2
$$

What about $H_{*}(X ; \mathbb{Z})$?
oriented nfl $\mu \Rightarrow[\mu] \in H_{*}(\mu ; \mathbb{Z})$

$$
f: M \rightarrow X \Rightarrow f_{*}[M] \in H_{*}(X ; \mathbb{Z})
$$

A NOT EVERY HOMOLOGY CLASS ARISES in this way!
Why? MSO is not a wedge of Eileberg-Mac Lane spectra!

$$
\left(\text { ever though } M S_{(2)} \simeq\left(Y_{2} H \mathbb{Z}\right) \vee(\underset{y}{Y} H \mathbb{Z} / 2)\right)
$$

Enter the Brown-Peterson spectrum
Eilenbery-Mae Lave spectra are not sulficuent to understavel cobordism theares.
Thm: $(B-P, 1966)$ prime p, \exists spectrun BP s.t. $\mathcal{M}_{(p)} \simeq \bigvee_{k} \Sigma^{n_{k}} B P$.

Furtlurmare, wher localized at odd primes, MSO, MSU, \& MSp are also wedges of suspersions of $B P$. (think " $B P=$ prime bordism")

Some properties of BP

- $\pi_{*} B P \cong \mathbb{Z}_{(p)}\left[v_{1}, v_{2}, \ldots\right], \quad\left|v_{i}\right|=2 p^{i}-2$
- $H_{*} B P \cong \mathbb{Z}_{(p)}\left[t_{1}, t_{2}, \ldots\right], \quad\left|t_{i}\right|=2 p^{i}-2$
- Hurewicz: $\pi_{*} B P \longrightarrow H_{*} B P$

$$
\longrightarrow \quad \pi_{*} B P \subseteq H_{*}(B P)
$$

Looks similar to MU, but much smaller: degrees of generators grow exponentially, not linearly. (for Mu, $\left|x_{i}\right|=2 i$)

Recall: Quill's theoven $L \xrightarrow{\sim} \pi_{*} M U$ \Rightarrow the formal group law associated to MU is the universal one.

Def: A formal group law F over a $\mathbb{Z}_{(p)}$-algebra is p-typical if $f_{q}(x)=0 \quad \forall$ primes $q \neq p$, $\frac{1}{q} \sum_{i=1}^{q} F \zeta^{i} x$, $\zeta=$ primitive $q^{\text {th }}$ root of 1 .

Over a torsian-free $\mathbb{Z}_{(p)}$-algebra,

$$
(F p \text {-typical }) \Leftrightarrow\left(\log _{F}(x)=\sum_{i \geqslant 0} l_{i} x^{p^{i}}, l_{0}=1\right) \text {. }
$$

Thy: (Quills) The formal group law associated to $B P$ is the universal p-typical fol over $\pi_{*} B P$.
it's induced by a homomorphism

$$
M U_{*} \otimes \mathbb{Z}_{(p)} \longrightarrow B P_{*}
$$

The Hopf algebrold $B P_{*}(B P)$

- ring: $B P_{*}(B P) \cong B P_{*}\left[t_{1}, t_{2}, \ldots\right],\left|t_{i}\right|=2 p^{i}-2$.
- coproduet: $\sum_{i, j \geqslant 0} l_{i} \Delta\left(t_{j}\right)^{p^{i}}=\sum_{i, k, k \geqslant 0} l_{i} t_{j}^{p^{i}} \otimes t_{k}^{p^{i+j}}$
- Left unit: $\eta_{L}: B P_{*} \longrightarrow B P_{*}(B P)$ nalusian.
- right unit: $\sum_{i \geqslant 0} \eta_{R}\left(l_{i}\right)=\sum_{i, j \geqslant 0} l_{i} t_{j}^{P^{i}}$

In contrast to $M U$, the Hop algebroid $B P_{*}(B P)$ camot be constructed from any Hop algebra over $\mathbb{Z}(p)$.

A perspective of Wilson \& Priddy (1980)

Raverel: In practice, BP computations are hard \Rightarrow usually compute modulo an ideal.
Thy: (Morava, Londweber)

- $I_{n}:=\left(P, v_{1}, \ldots, v_{n-1}\right) \subseteq B P_{*}$ is an invorent prime ideal.
- These are the only invarant prime ideals in $B P_{*}$.

Smaller versions of $B P$
Sullivan-Baas: construct a spectrum $C\left(y, \ldots, y_{n-1}\right)$ with $\pi_{*} C\left(y_{1}, \ldots, y_{n-1}\right) \cong \pi_{*} M U /\left(y_{1}, \ldots, y_{n-1}\right)$.
Johnson-Wilson: apply Sullivan-Bass to get $B P\langle n\rangle$ with $\pi_{*} B P\langle n\rangle=\mathbb{Z}_{(p)}\left[v_{1,}, \ldots, v_{n}\right]$
Ex: $B P\langle 1\rangle$ is a direct summand of $k U_{(p)}$.
Prop: X - finite $C W$ complex $\Rightarrow B P_{*}(X)$ con be computed using $B P\langle n\rangle_{*}(X)$ for some n.

The Adams spectral seqverce
Given a homology theory E_{*}, want a spectral sequence $\left\{E_{T}^{*+*}\right\}_{r} \rightarrow \pi_{*}(X)$ (at least at a prime p) whose E_{2}-page is a functor of $E^{*}(X)$ as a $E^{*}(E)$-module -or- " of $E_{*}(X)$ as a $E_{*}(E)$-comodule.

Ex: For $E=H \mathbb{Z} / p$,

$$
E_{2}=E x t_{A_{*}}\left(\mathbb{Z} / p, H_{*}(x)\right)
$$

Deft: The canonical Adams resolution for X based on E is the diagram

$$
\begin{array}{rl}
X= & X_{0} \longleftarrow X_{1} \longleftarrow \quad X_{2} \longleftarrow \cdots \\
& f_{0} \downarrow \\
& f_{1} \downarrow \\
& f_{2} \downarrow \text { induced }{ }^{6} y \\
& E \wedge X_{0} \\
E \wedge X_{1} & E \wedge X_{2}
\end{array}
$$

where $X_{n+1}=f_{i} b\left(f_{n}\right)$.
Each $X_{n+1} \rightarrow X_{n} \rightarrow E \wedge X_{n} \rightarrow$ long exact sequeree of homotopy groups.

Put these together ito an exact couple \Rightarrow the Adams spectral sequere for X based on E.
Puk: Other "Adams resolutions" also yule S.S!'s.
Bousfelel: gives conditions for convergence.
The E_{2}-page
when E is flat

$$
\Rightarrow E_{*}(E \wedge X) \cong E_{*}(E) \otimes_{\pi_{*} E} E_{*}(X) .
$$

As with $H \mathbb{Z} / p$ above, the E_{2}-page based on a flat ring spectivm can be described as an Ext group in the category of $E_{*}(E)$-comodules. Like $\mu u, B P$ is flat \&
Thu: (Novikov) The BP-basel Adams S.S. has

$$
E_{2} \cong E x t_{B P_{*}(B P)}\left(B P_{*}, B P_{*}(X)\right)
$$

calleal the Adans-Novikov spectral sequence.

